
STREAMS vs. Sockets Performance Comparison for UDP

Experimental Test Results for Linux

Brian F. G. Bidulock∗

OpenSS7 Corporation

June 16, 2007

Abstract

With the objective of contrasting performance between
STREAMS and legacy approaches to system facilities, a com-
parison is made between the tested performance of the Linux Na-
tive Sockets UDP implementation and STREAMS TPI UDP and
XTIoS UDP implementations using the Linux Fast-STREAMS
package [LfS].

1 Background

UNIX networking has a rich history. The TCP/IP protocol suite
was first implemented by BBN using Sockets under a DARPA re-
search project on 4.1aBSD and then incorporated by the CSRG
into 4.2BSD [MBKQ97]. Lachmann and Associates (Legent) sub-
sequently implemented one of the first TCP/IP protocol suite
based on the Transport Provider Interface (TPI) [TLI92] and
STREAMS [GC94]. Two other predominant TCP/IP implemen-
tations on STREAMS surfaced at about the same time: Wollon-
gong and Mentat.

1.1 STREAMS

STREAMS is a facility first presented in a paper by Dennis M.
Ritchie in 1984 [Rit84], originally implemented on 4.1BSD and
later part of Bell Laboratories Eighth Edition UNIX, incorpo-
rated into UNIX System V Release 3 and enhanced in UNIX
Sysvem V Release 4 and further in UNIX System V Release
4.2. STREAMS was used in SVR4 for terminal input-output,
pseudo-terminals, pipes, named pipes (FIFOs), interprocess com-
munication and networking. STREAMS was used in SVR3 for
networking (with the NSU package). Since its release in System
V Release 3, STREAMS has been implemented across a wide
range of UNIX, UNIX-like and UNIX-based systems, making its
implementation and use an ipso facto standard.

STREAMS is a facility that allows for a reconfigurable full
duplex communications path, Stream, between a user process and
a driver in the kernel. Kernel protocol modules can be pushed
onto and popped from the Stream between the user process and
driver. The Stream can be reconfigured in this way by a user
process. The user process, neighbouring protocol modules and
the driver communicate with each other using a message passing
scheme. This permits a loose coupling between protocol modules,
drivers and user processes, allowing a third-party and loadable
kernel module approach to be taken toward the provisioning of
protocol modules on platforms supporting STREAMS.

On UNIX System V Release 4.2, STREAMS was used for ter-
minal input-output, pipes, FIFOs (named pipes), and network
communications. Modern UNIX, UNIX-like and UNIX-based
systems providing STREAMS normally support some degree
of network communications using STREAMS; however, many
do not support STREAMS-based pipe and FIFOs1 or terminal
input-output.2

UNIX System V Release 4.2 supported four Application Pro-
grammer Interfaces (APIs) for accessing the network communi-

cations facilities of the kernel:

Transport Layer Interface (TLI). TLI is an acronym for the
Transport Layer Interface [TLI92]. The TLI was the non-
standard interface provided by SVR4, later standardized by
X/Open as the XTI described below. This interface is now
deprecated.

X/Open Transport Interface (XTI). XTI is an acronym for the
X/Open Transport Interface [XTI99]. The X/Open Trans-
port Interface is a standardization of the UNIX System V
Release 4, Transport Layer Interface. The interface con-
sists of an Application Programming Interface implemented
as a shared object library. The shared object library com-
municates with a transport provider Stream using a service
primitive interface called the Transport Provider Interface.

While XTI was implemented directly over STREAMS de-
vices supporting the Transport Provider Interface (TPI)
[TPI99] under SVR4, several non-traditional approaches ex-
ist in implementation:

Berkeley Sockets. Sockets uses the BSD interface that was de-
veloped by BBN for TCP/IP protocol suite under DARPA
contract on 4.1aBSD and released in 4.2BSD. BSD Sock-
ets provides a set of primary API functions that are typi-
cally implemented as system calls. The BSD Sockets inter-
face is non-standard and is now deprecated in favour of the
POSIX/SUS standard Sockets interface.

POSIX Sockets. Sockets were standardized by the OpenGroup
[OG] and IEEE in the POSIX standardization process.
They appear in XNS 5.2 [XNS99], SUSv1 [SUS95], SUSv2
[SUS98] and SUSv3 [SUS03].

On systems traditionally supporting Sockets and then
retrofitted to support STREAMS, there is one approach toward
supporting XTI without refitting the entire networking stack:3

XTI over Sockets. Several implementations of STREAMS on
UNIX utilize the concept of TPI over Sockets. Following
this approach, a STREAMS pseudo-device driver is provided
that hooks directly into internal socket system calls to im-
plement the driver, and yet the networking stack remains
fundamentally BSD in style.

Typically there are two approaches to implementing XTI on
systems not supporting STREAMS:

XTI Compatibility Library. Several implementations of XTI on
UNIX utilize the concept of an XTI compatibility library.4

This is purely a shared object library approach to provid-
ing XTI. Under this approach it is possible to use the XTI

∗bidulock@openss7.org

1. For example, AIX.

2. For example, HP-UX.

3. This approach is taken by True64 (Digital) UNIX.

4. One was even available for Linux at one point.

1

application programming interface, but it is not possible to
utilize any of the STREAMS capabilities of an underlying
Transport Provider Interface (TPI) stream.

TPI over Sockets. An alternate approach, taken by the Linux
iBCS package was to provide a pseudo-transport provider
using a legacy character device to present the appearance of
a STREAMS transport provider.

Conversely, on systems supporting STREAMS, but not tradi-
tionally supporting Sockets (such as SVR4), there are four ap-
proaches toward supporting BSD and POSIX Sockets based on
STREAMS:

Compatibility Library Under this approach, a compatibility li-
brary (libsocket.o) contains the socket calls as library
functions that internally invoke the TLI or TPI interface to
an underlying STREAMS transport provider. This is the ap-
proach originally taken by SVR4 [GC94], but this approach
has subsequently been abandoned due to the difficulties re-
garding fork(2) and fundamental incompatibilities deriving
from a library only approach.

Library and cooperating STREAMS module. Under this ap-
proach, a cooperating module, normally called sockmod, is
pushed on a Transport Provider Interface (TPI) Stream.
The library, normally called socklib or simply socket, and
cooperating sockmod module provide the BBN or POSIX
Socket API. [VS90] [Mar01]

Library and System Calls. Under this approach, the BSD or
POSIX Sockets API is implemented as system calls with
the sole exception of the socket(3) call. The underlying
transport provider is still an TPI-based STREAMS trans-
port provider, it is just that system calls instead of library
calls are used to implement the interface. [Mar01]

System Calls. Under this approach, even the socket(3) call is
moved into the kernel. Conversion between POSIX/BSD
Sockets calls and TPI service primitives is performed com-
pletely within the kernel. The sock2path(5) configuration
file is used to configure the mapping between STREAMS
devices and socket types and domains [Mar01].

1.1.1 Standardization.

During the POSIX standardization process, networking and
Sockets interfaces were given special treatment to ensure that
both the legacy Sockets approach and the STREAMS approach
to networking were compatible. POSIX has standardized both
the XTI and Sockets programmatic interface to networking.
STREAMS networking has been POSIX compliant for many
years, BSD Sockets, POSIX Sockets, TLI and XTI interfaces, and
were compliant in the SVR4.2 release. The STREAMS network-
ing provided by Linux Fast-STREAMS package provides POSIX
compliant networking.

Therefore, any application utilizing a Socket or Stream
in a POSIX compliant manner will also be compatible with
STREAMS networking.5

1.2 Linux Fast-STREAMS

The first STREAMS package for Linux that provided SVR4
STREAMS capabilities was the Linux STREAMS (LiS) package
originally available from GCOM [LiS]. This package exhibited in-
compatibilities with SVR 4.2 STREAMS and other STREAMS
implementations, was buggy and performed very poorly on Linux.
These difficulties prompted the OpenSS7 Project [SS7] to imple-
ment an SVR 4.2 STREAMS package from scratch, with the ob-
jective of production quality and high-performance, named Linux
Fast-STREAMS [LfS].

The OpenSS7 Project also maintains public and internal ver-
sions of the LiS package. The last public release was LiS-2.18.3 ;
the current internal release version is LiS-2.18.6. The current
production public release of Linux Fast-STREAMS is streams-
0.9.3.

2 Objective

The question has been asked whether there are performance dif-
ferences between a purely BSD-style approach and a STREAMS
approach to TCP/IP networking, cf. [RBD97]. However, there
did not exist a system which permitted both approaches to be
tested on the same operating system. Linux Fast-STREAMS
running on the GNU/Linux operating system now permits this
comparison to be made. The objective of the current study, there-
fore, was to determine whether, for the Linux operating system, a
STREAMS-based approach to TCP/IP networking is a viable re-
placement for the BSD-style sockets approach provided by Linux,
termed NET4.

When developing STREAMS, the authors oft times found that
there were a number of preconceptions espoused by Linux advo-
cates about both STREAMS and STREAMS-based networking,
as follows:

• STREAMS is slow.

• STREAMS is more flexible, but less efficient [LML].

• STREAMS performs poorly on uniprocessor and ever poorer
on SMP.

• STREAMS networking is slow.

• STREAMS networking is unnecessarily complex and cum-
bersome.

For example, the Linux kernel mailing list has this to say about
STREAMS:

(REG) STREAMS allow you to ”push” filters onto a network
stack. The idea is that you can have a very primitive
network stream of data, and then ”push” a filter (”mod-
ule”) that implements TCP/IP or whatever on top of
that. Conceptually, this is very nice, as it allows clean
separation of your protocol layers. Unfortunately, imple-
menting STREAMS poses many performance problems.
Some Unix STREAMS based server telnet implementa-
tions even ran the data up to user space and back down
again to a pseudo-tty driver, which is very inefficient.

STREAMS will never be available in the standard
Linux kernel, it will remain a separate implementation
with some add-on kernel support (that come with the
STREAMS package). Linus and his networking gurus are
unanimous in their decision to keep STREAMS out of the
kernel. They have stated several times on the kernel list
when this topic comes up that even optional support will
not be included.

(REW, quoting Larry McVoy) ”It’s too bad, I can see why
some people think they are cool, but the performance cost
- both on uniprocessors and even more so on SMP boxes
- is way too high for STREAMS to ever get added to the
Linux kernel.”

Please stop asking for them, we have agreement amoungst
the head guy, the networking guys, and the fringe folks
like myself that they aren’t going in.

(REG, quoting Dave Grothe, the STREAMS guy)
STREAMS is a good framework for implementing
complex and/or deep protocol stacks having nothing to
do with TCP/IP, such as SNA. It trades some efficiency
for flexibility. You may find the Linux STREAMS
package (LiS) to be quite useful if you need to port
protocol drivers from Solaris or UnixWare, as Caldera
did.

The Linux STREAMS (LiS) package is available for download
if you want to use STREAMS for Linux. The following site also
contains a dissenting view, which supports STREAMS.

The current study attempts to determine the validity of these
preconceptions.

5. This compatibility is exemplified by the netperf program which does
not distinguish between BSD or STREAMS based networking in their im-
plementation or use.

2

3 Description

Three implementations are tested:

Linux Kernel UDP (udp).

The native Linux socket and networking system.

OpenSS7 STREAMS XTIoS inet Driver.

A STREAMS pseudo-device driver that communicates with
a socket internal to the kernel.

The OpenSS7 implementation of STREAMS XTI over Sock-
ets implementation of UDP. While the implementation uses
the Transport Provider Interface and STREAMS to commu-
nicate with the driver, internal to the driver a UDP Socket
is opened and conversion between STREAMS and Sockets
performed.

OpenSS7 STREAMS TPI UDP Driver udp.

A STREAMS pseudo-device driver that fully implements
UDP and communicates with the IP layer in the kernel.

The three implementations tested vary in their implementation
details. These implementation details are described below.

3.1 Linux Kernel UDP

Normally, in BSD-style implementations of Sockets, Sockets is
not merely the Application Programmer Interface, but also con-
sists of a more general purpose network protocol stack imple-
mentation [MBKQ97], even though the mechanism is not used
for more than TCP/IP networking. [GC94]

Although BSD networking implementations consist of a num-
ber of networking layers with soft interrupts used for each layer
of the networking stack [MBKQ97], the Linux implementation,
although based on the the BSD approach, tightly integrates the
socket, protocol, IP and interface layers using specialized inter-
faces. Although roughly corresponding to the BSD stack as il-
lustrated in Figure 1, the socket, protocol and interface layers
in the BSD stack have well defined, general purpose interfaces
applicable to a wider range of networking protocols.

TCP UDP SCTP

Linux NET4

IP

Layer

Interface

SocketSocket

Protocol

Interface

Protocol

Interface

Protocol

Interface

TCP UDP SCTP

IP

Interface

Figure 1: Sockets: BSD and Linux

Both Linux UDP implementations are a good example of the
tight integration between the components of the Linux network-
ing stack.

Write side processing. On the write side of the Socket, bytes
are copied from the user into allocated socket buffers. Write
side socket buffers are charged against the send buffer. Socket
buffers are immediately dispatched to the IP layer for processing.
When the IP layer (or a driver) consumes the socket buffer, it
releases the amount of send buffer space that was charged for the
send buffer. If there is insufficient space in the send buffer to
accommodate the write, the calling processed is either blocked or
the system call returns an error (ENOBUFS).

For loop-back operation, immediately sending the socket buffer
to the IP layer has the additional ramification that the socket
buffer is immediately struck from the send buffer and immediately
added to the receive buffer on the receiving socket. Therefore,
the size of the send buffer or the send low water mark, have no
effect.

Read side processing. On the read side of the Socket, the
network layer calls the protocol’s receive function. The receive
function checks if socket is locked (by a reading or writing user).
If the socket is locked the socket buffer placed in the socket’s
backlog queue. The backlog queue can hold a maximum number
of socket buffers. If this maximum is exceeded, the packet is
dropped. If the socket is unlocked, and the socket buffer will fit
in the socket’s receive buffer, the socket buffer is charged against
the receive buffer. If the socket buffer will not fit in the receive
buffer, the socket buffer is dropped.

Read side processing under Linux does not differ from BSD, ex-
cept for loop-back devices. Normally, for non-loop-back devices,
skbuffs received by the device are queued against the IP layer
and the IP layer software interrupt is raised. When the software
interrupt runs, skbuffss are delivered directly to the transport
protocol layer without intermediate queueing [MBKQ97].

For loop-back operation, however, Linux skips queueing at the
IP protocol layer (which does not exist as it does in BSD) and,
instead, delivers skbuffs directly to the transport protocol.

Due to this difference between Linux and BSD on the read side,
it is expected that performance results for Linux would vary from
that of BSD, and the results of this testing would therefore not
be directly applicable to BSD.

Buffering. Buffering at the Socket consist of a send buffer and
low water mark and a receive buffer and low water mark. When
the send buffer is consumed with outstanding messages, writing
processes will either block or the system call will fail with an error
(ENOBUFS). When the send buffer is full higher than the low water
mark, a blocked writing process will not be awoken (regardless of
whether the process is blocked in write or blocked in poll/select).
The send low water mark for Linux is fixed at one-half of the
send buffer.

It should be noted that for loop-back operation under Linux,
the send buffering mechanism is effectively defeated.

When the receive buffer is consumed with outstanding mes-
sages, received messages will be discarded. This is in rather stark
contrast to BSD where messages are effectively returned to the
network layer when the socket receive buffer is full and the net-
work layer can determine whether messages should be discarded
or queued further [MBKQ97].

When there is no data in the receive buffer, the reading process
will either block or return from the system call with an error
(ENOBUFS again). When the receive buffer has fewer bytes of data
in it than the low water mark, a blocked reading process will not
be awoken (regardless of whether the process is blocked in write
or blocked in poll/select). The receive low water mark for Linux
is typically set to BSD default of 1 byte.6

6. The fact that Linux sets the receive low water mark to 1 byte is an
indication that the buffering mechanism on the read side simply does not
work.

3

It should be noted that the Linux buffering mechanism does
not have hysteresis like that of STREAMS. When the amount
of data in the send buffer exceeds the low water mark, poll will
cease to return POLLOUT; when the receive buffer is less than the
low water mark, poll will cease to return POLLIN.

Scheduling. Scheduling of processes and the buffering mecha-
nism are closely related.

Writing processes for loop-back operation under UDP are al-
lowed to spin wildly. Written data charged against the send buffer
is immediately released when the loop-back interface is encoun-
tered and immediately delivered to the receiving socket (or dis-
carded). If the writing process is writing data faster that the
reading process is consuming it, the excess will simply be dis-
carded, and no back-pressure signalled to the sending socket.

If receive buffer sizes are sufficiently large, the writing process
will lose the processor on uniprocessor systems and the reading
process scheduled before the buffer overflows; if they are not, the
excess will be discarded. On multiprocessor systems, provided
that the read operation takes less time than the write operation,
the reading process will be able to keep pace with the writing
process. If the receiving process is run with a very low priority,
the writing process will always have the processor and a large
percentage of the written messages will be discarded.

It should be noted that this is likely a Linux-specific deficiency
as the BSD system introduces queueing, even on loop-back.

Reading processes for loop-back operation under UDP are awo-
ken whenever a single byte is received (due to the default receive
low water mark). If the reading process has higher priority than
the writing process on uniprocessors, the reading process will be
awoken for each message sent and the reading process will read
that message before the writing process is permitted to write an-
other. On SMP systems, because reading processes will likely
have the socket locked while reading each message, backlog pro-
cessing will likely be invoked.

3.2 Linux Fast-STREAMS

Linux Fast-STREAMS is an implementation of SVR4.2
STREAMS for the GNU/Linux system developed by the
OpenSS7 Project [SS7] as a replacement for the buggy, under-
performing and now deprecated Linux STREAMS (LiS) package.
Linux Fast-STREAMS provides the STREAMS executive and in-
terprocess communication facilities (pipes and FIFOs). Add-on
packages provide compatibility between Linux Fast-STREAMS
and other STREAMS implementations, a complete XTI shared
object library, and transport providers. Transport providers for
the TCP/IP suite consist of an inet driver that uses the XTI
over Sockets approach as well as a full STREAMS implemen-
tation of SCTP (Stream Control Transmission Protocol), UDP
(User Datagram Protocol) and RAWIP (Raw Internet Protocol).

3.2.1 XTI over Sockets

The XTI over Sockets implementation is the inet STREAMS
driver developed by the OpenSS7 Project [SS7]. As illustrated
in Figure 2, this driver is implemented as a STREAMS pseudo-
device driver and uses STREAMS for passing TPI service primi-
tives to and from upstream modules or the Stream head. Within
the driver, data and other TPI service primitives are translated
into kernel socket calls to a socket that was opened by the driver
corresponding to the transport provider instance. Events re-
ceived from this internal socket are also translated into transport
provider service primitives and passed upstream.

Write side processing. Write side processing uses standard
STREAMS flow control mechanisms as are described for TPI,
below, with the exception that once the message blocks arrive
at the driver they are passed to the internal socket. Therefore,

Protocol

Interface

TCP UDP SCTP

Linux NET4

IP

Layer

Interface

Stream head Socket

inet

Driver

Figure 2: XTI over Sockets inet Driver

a unique characteristic of the write side processing for the XTI
over Sockets driver is that data is first copied from user space
into STREAMS message blocks and then copied again from the
STREAMS message blocks to the socket. This constitutes two
copies per byte versus one copy per byte and has a significant
impact on the performance of the driver at large message sizes.7

Read side processing. Read side processing uses standard
STREAMS flow control mechanisms as are described for TPI,
below. A unique characteristic of the read side processing fro
the XTI over Sockets driver is that data is first copied from the
internal socket to a STREAMS message block and then copied
again from the STREAMS message block to user space. This
constitutes two copies per byte versus one copy per byte and has
a significant impact on the performance of the driver at large
message sizes.8

Buffering. Buffering uses standard STREAMS queueing and
flow control mechanisms as are described for TPI, below.

Scheduling. Scheduling resulting from queueing and flow con-
trol are the same as described for TPI below. Considering that
the internal socket used by the driver is on the loop-back inter-
face, data written on the sending socket appears immediately at
the receiving socket or is discarded.

3.2.2 STREAMS TPI

The STREAMS TPI implementation of UDP is a direct
STREAMS implementation that uses the udp driver developed by
the OpenSS7 Project [SS7]. As illustrated in Figure 3, this driver
interfaces to Linux at the network layer, but provides a com-
plete STREAMS implementation of the transport layer. Interfac-
ing with Linux at the network layer provides for de-multiplexed
STREAMS architecture [RBD97]. The driver presents the Trans-
port Provider Interface (TPI) [TPI99] for use by upper level mod-
ules and the XTI library [XTI99].

Linux Fast-STREAMS also provides a raw IP driver (raw) and
an SCTP driver (sctp) that operate in the same fashion as the

7. This expectation of peformance impact is held up by the test results.

8. This expectation of peformance impact is held up by the test results.

4

Protocol

Interface

TCP UDP SCTP

Linux NET4

IP

Layer

Interface

Stream head Socket

Driver

udp

Figure 3: STREAMS udp Driver

udp driver. That is, performing all transport protocol functions
within the driver and interfacing to the Linux NET4 IP layer.
One of the project objectives of performing the current testing
was to determine whether it would be worth the effort to write a
STREAMS transport implementation of TCP, the only missing
component in the TCP/IP suite that necessitates the continued
support of the XTI over Sockets (inet) driver.

Write side processing. Write side processing follows standard
STREAMS flow control. When a write occurs at the Stream head,
the Stream head checks for downstream flow control on the write
queue. If the Stream is flow controlled, the calling process is
blocked or the write system call fails (EAGAIN). When the Stream
is not flow controlled, user data is transferred to allocated mes-
sage blocks and passed downstream. When the message blocks
arrive at a downstream queue, the count of the data in the mes-
sage blocks is added to to the queue count. If the queue count
exceeds the high water mark defined for the queue, the queue is
marked full and subsequent upstream flow control tests will fail.

Read side processing. Read side processing follows standard
STREAMS flow control. When a read occurs at the Stream head,
the Stream head checks the read queue for messages. If the read
queue has no messages queued, the queue is marked to be enabled
when messages arrive and the calling process is either blocked or
the system call returns an error (EAGAIN). If messages exist on
the read queue, they are dequeued and data copied from the
message blocks to the user supplied buffer. If the message block
is completely consumed, it is freed; otherwise, the message block
is placed back on the read queue with the remaining data.

Buffering. Buffering follows the standard STREAMS queueing
and flow control mechanisms. When a queue is found empty
by a reading process, the fact that the queue requires service is
recorded. Once the first message arrives at the queue following
a process finding the queue empty, the queue’s service procedure
will be scheduled with the STREAMS scheduler. When a queue
is tested for flow control and the queue is found to be full, the fact
that a process wishes to write the to queue is recorded. When
the count of the data on the queue falls beneath the low water

mark, previous queues will be back enabled (that is, their service
procedures will be scheduled with the STREAMS scheduler).

Scheduling. When a queue downstream from the stream head
write queue is full, writing processes either block or fail with an
error (EAGAIN). When the forward queue’s count falls below its
low water mark, the stream head write queue is back-enabled.
Back-enabling consists of scheduling the queue’s service proce-
dure for execution by the STREAMS scheduler. Only later, when
the STREAMS scheduler runs pending tasks, does any writing
process blocked on flow control get woken.

When a stream head read queue is empty and a reading pro-
cesses either block or fail with an error (EAGAIN). When a mes-
sage arrives at the stream head read queue, the service proce-
dure associated with the queue is scheduled for later execution
by the STREAMS scheduler. Only later, when the STREAMS
scheduler runs pending tasks, does any reading process blocked
awaiting messages get awoken.

4 Method

To test the performance of STREAMS networking, the Linux
Fast-STREAMS package was used [LfS]. The Linux Fast-
STREAMS package builds and installs Linux loadable kernel
modules and includes the modified netperf and iperf programs
used for testing.

Test Program. One program used is a version of the netperf

network performance measurement tool developed and main-
tained by Rick Jones for Hewlett-Packard. This modified ver-
sion is available from the OpenSS7 Project [Jon07]. While the
program is able to test using both POSIX Sockets and XTI
STREAMS interfaces, modifications were required to the package
to allow it to compile for Linux Fast-STREAMS.

The netperf program has many options. Therefore, a bench-
mark script (called netperf benchmark) was used to obtain re-
peatable raw data for the various machines and distributions
tested. This benchmark script is included in the netperf dis-
tribution available from the OpenSS7 Project [Jon07]. A listing
of this script is provided in Appendix A.

4.1 Implementations Tested

The following implementations were tested:

UDP Sockets This is the Linux NET4 Sockets implementation
of UDP, described in Section ??, with normal scheduling priori-
ties. Normal scheduling priority means invoking the sending and
receiving processes without altering their run-time scheduling pri-
ority.

UDP Sockets with artificial process priorities.

STREAMS XTIoS UDP. This is the OpenSS7 STREAMS
implementation of XTI over Sockets for UDP, described in Sec-
tion 3.2.1. This implementation is tested using normal run-time
scheduling priorities.

STREAMS TPI SCTP. This is the OpenSS7 STREAMS im-
plementation of UDP using XTI/TPI directly, described in Sec-
tion 3.2.2. This implementation is tested using normal run-time
scheduling priorities.

4.2 Distributions Tested

To remove the dependence of test results on a particular Linux
kernel or machine, various Linux distributions were used for test-
ing. The distributions tested are as follows:

5

Distribution Kernel

RedHat 7.2 2.4.20-28.7
WhiteBox 3 2.4.27
CentOS 4 2.6.9-5.0.3.EL
SuSE 10.0 OSS 2.6.13-15-default
Ubuntu 6.10 2.6.17-11-generic
Ubuntu 7.04 2.6.20-15-server
Fedora Core 6 2.6.20-1.2933.fc6

4.3 Test Machines

To remove the dependence of test results on a particular machine,
various machines were used for testing as follows:

Hostname Processor Memory Architecture

porky 2.57GHz PIV 1Gb (333MHz) i686 UP
pumbah 2.57GHz PIV 1Gb (333MHz) i686 UP
daisy 3.0GHz i630 HT 1Gb (400MHz) x86 64 SMP
mspiggy 1.7GHz PIV 1Gb (333MHz) i686 UP

5 Results

The results for the various distributions and machines is tabu-
lated in Appendix B. The data is tabulated as follows:

Performance. Performance is charted by graphing the number of
messages sent and received per second against the logarithm
of the message send size.

Delay. Delay is charted by graphing the number of seconds per
send and receive against the sent message size. The delay
can be modelled as a fixed overhead per send or receive oper-
ation and a fixed overhead per byte sent. This model results
in a linear graph with the zero x-intercept representing the
fixed per-message overhead, and the slope of the line rep-
resenting the per-byte cost. As all implementations use the
same primary mechanism for copying bytes to and from user
space, it is expected that the slope of each graph will be sim-
ilar and that the intercept will reflect most implementation
differences.

Throughput. Throughput is charted by graphing the logarithm
of the product of the number of messages per second and
the message size against the logarithm of the message size.
It is expected that these graphs will exhibit strong log-log-
linear (power function) characteristics. Any curvature in
these graphs represents throughput saturation.

Improvement. Improvement is charted by graphing the quotient
of the bytes per second of the implementation and the bytes
per second of the Linux sockets implementation as a per-
centage against the message size. Values over 0% represent
an improvement over Linux sockets, whereas values under
0% represent the lack of an improvement.

The results are organized in the sections that follow in order
of the machine tested.

5.1 Porky

Porky is a 2.57GHz Pentium IV (i686) uniprocessor machine with
1Gb of memory. Linux distributions tested on this machine are
as follows:

Distribution Kernel

Fedora Core 6 2.6.20-1.2933.fc6
CentOS 4 2.6.9-5.0.3.EL
SuSE 10.0 OSS 2.6.13-15-default
Ubuntu 6.10 2.6.17-11-generic
Ubuntu 7.04 2.6.20-15-server

5.1.1 Fedora Core 6

Fedora Core 6 is the most recent full release Fedora distribution.
This distribution sports a 2.6.20-1.2933.fc6 kernel with the latest
patches. This is the x86 distribution with recent updates.

Performance. Figure 4 plots the measured performance of
Sockets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at mes-
sage sizes of less than 1024 bytes.

Delay. Figure 5 plots the average message delay of UDP Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at mes-
sage sizes of less than 1024 bytes.

From the figure, it can be seen that the slope of the delay
graph for STREAMS and Sockets are about the same. This
is expected as both implementations use the same function
to copy message bytes to and from user space. The slope
of the XTI over Sockets graph is over twice the slope of the
Sockets graph which reflects the fact that XTI over Sockets
performs multiple copies of the data: two copies on the send
side and two copies on the receive side.

The intercept for STREAMS is lower than Sockets, indi-
cating that STREAMS has a lower per-message overhead
than Sockets, despite the fact that the destination address
is being copied to and from user space for each message.

Throughput. Figure 6 plots the effective throughput of UDP
Sockets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes.

As can be seen from the figure, all implementations exhibit
strong power function characteristics (at least at lower write
sizes), indicating structure and robustness for each imple-
mentation. The slight concave downward curvature of the
graphs at large message sizes indicates some degree of satu-
ration.

Improvement. Figure 7 plots the comparison of Sockets to XTI
over Socket and XTI approaches. STREAMS demonstrates
significant improvements (approx. 30% improvement) at
message sizes below 1024 bytes. Perhaps surprising is that
the XTI over Sockets approach rivals (95%) Sockets alone
at small message sizes (where multiple copies are not con-
trolling).

The results for Fedora Core 6 on Porky are, for the most part,
similar to the results from other distributions on the same host
and also similar to the results for other distributions on other
hosts.

5.1.2 CentOS 4.0

CentOS 4.0 is a clone of the RedHat Enterprise 4 distribution.
This is the x86 version of the distribution. The distribution sports
a 2.6.9-5.0.3.EL kernel.

Performance. Figure 8 plots the measured performance of
Sockets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at mes-
sage sizes of less than 1024 bytes.

As can be seen from the figure, Linux Fast-STREAMS out-
performs Linux at all message sizes. Also, and perhaps sur-
prisingly, the XTI over Sockets implementation also per-
forms as well as Linux at lower message sizes.

Delay. Figure 9 plots the average message delay of Sockets com-
pared to XTI over Socket and XTI approaches. STREAMS
demonstrates significant improvements at message sizes of
less than 1024 bytes.

6

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 4: Fedora Core 6 on Porky Performance

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

0.00001

0.00002

0.00002

0.00003

0.00003

0.00004

0.00004

0.00005

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

D
el

ay

Message Size (Bytes)

Figure 5: Fedora Core 6 on Porky Delay

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 6: Fedora Core 6 on Porky Throughput

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 7: Fedora Core 6 on Porky Comparison

Both STREAMS and Sockets exhibit the same slope, and
XTI over Sockets exhibits over twice the slope, indicat-
ing that copies of data control the per-byte characteristics.
STREAMS exhibits a lower intercept than both other im-
plementations, indicating that STREAMS has the lowest
per-message overhead, regardless of copying the destination
address to and from the user with each sent and received
message.

Throughput. Figure 10 plots the effective throughput of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes.

As can be seen from the figure, all implementations exhibit
strong power function characteristics (at least at lower write
sizes), indicating structure and robustness for each imple-
mentation. Again, the slight concave downward curvature
at large memory sizes indicates memory bus saturation.

Improvement. Figure 11 plots the comparison of Sockets to
XTI over Socket and XTI approaches. STREAMS demon-
strates significant improvements (approx. 30-40% improve-
ment) at message sizes below 1024 bytes. Perhaps surprising
is that the XTI over Sockets approach rivals (97%) Sockets
alone at small message sizes (where multiple copies are not
controlling).

The results for CentOS on Porky are, for the most part, similar
to the results from other distributions on the same host and also
similar to the results for other distributions on other hosts.

5.1.3 SuSE 10.0 OSS

SuSE 10.0 OSS is the public release version of the SuSE/Novell
distribution. There have been two releases subsequent to this
one: the 10.1 and recent 10.2 releases. The SuSE 10 release
sports a 2.6.13 kernel and the 2.6.13-15-default kernel was the
tested kernel.

Performance. Figure 12 plots the measured performance of
Sockets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes.

Delay. Figure 13 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes.

Again, STREAMS and Sockets exhibit the same slope, and
XTI over Sockets more than twice the slope. STREAMS
again has a significantly lower intercept and the XTI over
Sockets and Sockets intercepts are similar, indicating that
STREAMS has a smaller per-message overhead, despite
copying destination addresses with each message.

Throughput. Figure 14 plots the effective throughput of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes.

As can be seen from Figure 14, all implementations exhibit
strong power function characteristics (at least at lower write
sizes), indicating structure and robustness for each imple-
mentation.

Improvement. Figure 15 plots the comparison of Sockets to
XTI over Socket and XTI approaches. STREAMS demon-
strates significant improvements (25-30%) at all message
sizes.

The results for SuSE 10 OSS on Porky are, for the most part,
similar to the results from other distributions on the same host
and also similar to the results for other distributions on other
hosts.

7

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 8: CentOS on Porky Performance

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

0.00001

0.00001

0.00002

0.00002

0.00003

0.00003

0.00004

0.00004

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

D
el

ay

Message Size (Bytes)

Figure 9: CentOS on Porky Delay

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 10: CentOS on Porky Throughput

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 11: CentOS on Porky Comparison

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 12: SuSE on Porky Performance

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

0.00001

0.00002

0.00002

0.00003

0.00003

0.00004

0.00004

0.00005

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

D
el

ay

Message Size (Bytes)

Figure 13: SuSE on Porky Delay

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 14: SuSE on Porky Throughput

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 60

 70

 80

 90

 100

 110

 120

 130

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 15: SuSE on Porky Comparison

8

5.1.4 Ubuntu 6.10

Ubuntu 6.10 is the current release of the Ubuntu distribution.
The Ubuntu 6.10 release sports a 2.6.15 kernel. The tested dis-
tribution had current updates applied.

Performance. Figure 16 plots the measured performance of
Sockets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates marginal improvements (approx.
5%) at all message sizes.

Delay. Figure 17 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates marginal improvements at all mes-
sage sizes.

Although STREAMS exhibits the same slope (per-byte pro-
cessing overhead) as Sockets, Ubuntu and the 2.6.17 kernel
are the only combination where the STREAMS intercept
is not significantly lower than Sockets. Also, the XTI over
Sockets slope is steeper and the XTI over Sockets intercept
is much larger than Sockets alone.

Throughput. Figure 18 plots the effective throughput of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates marginal improvements at all mes-
sage sizes.

As can be seen from Figure 18, all implementations exhibit
strong power function characteristics (at least at lower write
sizes), indicating structure and robustness for each imple-
mentation.

Improvement. Figure 19 plots the comparison of Sockets to
XTI over Socket and XTI approaches. STREAMS demon-
strates marginal improvements (approx. 5%) at all message
sizes.

Unbuntu is the only distribution tested where STREAMS
does not show significant improvements over Sockets. Nev-
ertheless, STREAMS does show marginal improvement (ap-
prox. 5%) over all message sizes and performed better than
Sockets at all message sizes.

5.1.5 Ubuntu 7.04

Ubuntu 7.04 is the current release of the Ubuntu distribution.
The Ubuntu 7.04 release sports a 2.6.20 kernel. The tested dis-
tribution had current updates applied.

Performance. Figure 20 plots the measured performance of
Sockets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements (approx.
20-60%) at all message sizes.

Delay. Figure 21 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes.

STREAMS and Sockets exhibit the slope, and XTI over
Sockets more than twice the slope. STREAMS, however,
has a significantly lower intercept and XTI over Sockets and
Sockets intercepts are similar, indicating that STREAMS
has a smaller per-message overhead, despite copying desti-
nation addresses with each message.

Throughput. Figure 22 plots the effective throughput of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes.

As can be seen from Figure 22, all implementations exhibit
strong power function characteristics (at least at lower write
sizes), indicating structure and robustness for each imple-
mentation.

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 16: Ubuntu 6.10 on Porky Performance

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

0.00002

0.00002

0.00003

0.00003

0.00004

0.00004

0.00005

0.00005

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

D
el

ay

Message Size (Bytes)

Figure 17: Ubuntu 6.10 on Porky Delay

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 18: Ubuntu 6.10 on Porky Throughput

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 110

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 19: Ubuntu 6.10 on Porky Comparison

9

Improvement. Figure 23 plots the comparison of Sockets to
XTI over Socket and XTI approaches. STREAMS demon-
strates significant improvements (approx. 20-60%) at all
message sizes.

The results for Ubuntu 7.04 on Porky are, for the most part,
similar to the results from other distributions on the same host
and also similar to the results for other distributions on other
hosts.

5.2 Pumbah

Pumbah is a 2.57GHz Pentium IV (i686) uniprocessor machine
with 1Gb of memory. This machine differs from Porky in memory
type only (Pumbah has somewhat faster memory than Porky.)
Linux distributions tested on this machine are as follows:

Distribution Kernel

RedHat 7.2 2.4.20-28.7

Pumbah is a control machine and is used to rule out differences
between recent 2.6 kernels and one of the oldest and most stable
2.4 kernels.

5.2.1 RedHat 7.2

RedHat 7.2 is one of the oldest (and arguably the most stable)
glibc2 based releases of the RedHat distribution. This distribu-
tion sports a 2.4.20-28.7 kernel. The distribution has all available
updates applied.

Performance. Figure 24 plots the measured performance of
Sockets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes, and staggering improvements at large mes-
sage sizes.

Delay. Figure 25 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes, and staggering improvements at large mes-
sage sizes.

The slope of the STREAMS delay curve is much lower than
(almost half that of) the Sockets delay curve, indicating that
STREAMS is exploiting some memory efficiencies not pos-
sible in the Sockets implementation.

Throughput. Figure 26 plots the effective throughput of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates improvements at all message sizes.

As can be seen from Figure 26, all implementations exhibit
strong power function characteristics (at least at lower write
sizes), indicating structure and robustness for each imple-
mentation.

The Linux NET4 UDP implementation results deviate more
sharply from power function behaviour at high message
sizes. This also, is rather different that the 2.6 kernel situ-
ation. One contributing factor is the fact that neither the
send nor receive buffers can be set above 65,536 bytes on this
version of Linux 2.4 kernel. Tests were performed with send
and receive buffer size requests of 131,072 bytes. Both the
STREAMS XTI over Sockets UDP implementation and the
Linux NET4 UDP implementation suffer from the maximum
buffer size, whereas, the STREAMS UDP implementation
implements and permits the larger buffers.

Improvement. Figure 27 plots the comparison of Sockets to
XTI over Socket and XTI approaches. STREAMS demon-
strates significant improvements all message sizes.

The more dramatic improvements over Linux NET4 UDP
and XTI over Sockets UDP is likely due in part to the re-
striction on buffer sizes in 2.4 as described above.

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 20: Ubuntu 7.04 on Porky Performance

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

0.00001

0.00001

0.00002

0.00002

0.00003

0.00003

0.00004

0.00004

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

D
el

ay

Message Size (Bytes)

Figure 21: Ubuntu 7.04 on Porky Delay

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 22: Ubuntu 7.04 on Porky Throughput

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 23: Ubuntu 7.04 on Porky Comparison

10

Unfortunately, the RedHat 7.2 system does not appear to
have acted as a very good control system. The differences in
maximum buffer size make any differences from other tested
behaviour obvious.

5.3 Daisy

Daisy is a 3.0GHz i630 (x86 64) hyper-threaded machine with
1Gb of memory. Linux distributions tested on this machine are
as follows:

Distribution Kernel

Fedora Core 6 2.6.20-1.2933.fc6
CentOS 5.0 2.6.18-8.1.3.el5

This machine is used as an SMP control machine. Most of the
tests were performed on uniprocessor non-hyper-threaded ma-
chines. This machine is hyper-threaded and runs full SMP ker-
nels. This machine also supports EMT64 and runs x86 64 ker-
nels. It is used to rule out both SMP differences as well as 64-bit
architecture differences.

5.3.1 Fedora Core 6 (x86 64)

Fedora Core 6 is the most recent full release Fedora distribution.
This distribution sports a 2.6.20-1.2933.fc6 kernel with the latest
patches. This is the x86 64 distribution with recent updates.

Performance. Figure 28 plots the measured performance of
Sockets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at mes-
sage sizes of less than 1024 bytes.

Delay. Figure 29 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at mes-
sage sizes of less than 1024 bytes.

The slope of the delay curve either indicates that Sock-
ets is using slightly larger buffers than STREAMS, or that
Sockets is somehow exploiting some per-byte efficiencies at
larger message sizes not achieved by STREAMS. Neverthe-
less, the STREAMS intercept is so low that the delay curve
for STREAMS is everywhere beneath that of Sockets.

Throughput. Figure 30 plots the effective throughput of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes.

As can be seen from Figure 30, all implementations exhibit
strong power function characteristics (at least at lower write
sizes), indicating structure and robustness for each imple-
mentation.

Improvement. Figure 31 plots the comparison of Sockets to
XTI over Socket and XTI approaches. STREAMS demon-
strates significant improvements (approx. 40% improve-
ment) at message sizes below 1024 bytes. That STREAMS
UDP gives a 40% improvement over a wide range of mes-
sage sizes on SMP is a dramatic improvement. Statements
regarding STREAMS networking running poorer on SMP
than on UP are quite wrong, at least with regard to Linux
Fast-STREAMS.

5.3.2 CentOS 5.0 (x86 64)

CentOS 5.0 is the most recent full release CentOS distribution.
This distribution sports a 2.6.18-8.1.3.el5 kernel with the latest
patches. This is the x86 64 distribution with recent updates.

Performance. Figure 32 plots the measured performance of
Sockets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at mes-
sage sizes of less than 1024 bytes.

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 24: RedHat 7.2 on Pumbah Performance

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

0.00001

0.00001

0.00002

0.00002

0.00003

0.00003

0.00004

0.00004

0.00005

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

D
el

ay

Message Size (Bytes)

Figure 25: RedHat 7.2 on Pumbah Delay

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 26: RedHat 7.2 on Pumbah Throughput

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 27: RedHat 7.2 on Pumbah Comparison

11

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 28: Fedora Core 6 on Daisy Performance

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

0.00001

0.00001

0.00002

0.00002

0.00003

0.00003

0.00004

0.00004

0.00005

0.00005

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

D
el

ay

Message Size (Bytes)

Figure 29: Fedora Core 6 on Daisy Delay

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 30: Fedora Core 6 on Daisy Throughput

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 31: Fedora Core 6 on Daisy Comparison

Delay. Figure 33 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at mes-
sage sizes of less than 1024 bytes.

The slope of the delay curve either indicates that Sock-
ets is using slightly larger buffers than STREAMS, or that
Sockets is somehow exploiting some per-byte efficiencies at
larger message sizes not achieved by STREAMS. Neverthe-
less, the STREAMS intercept is so low that the delay curve
for STREAMS is everywhere beneath that of Sockets.

Throughput. Figure 34 plots the effective throughput of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes.

As can be seen from Figure 34, all implementations exhibit
strong power function characteristics (at least at lower write
sizes), indicating structure and robustness for each imple-
mentation.

Improvement. Figure 35 plots the comparison of Sockets to
XTI over Socket and XTI approaches. STREAMS demon-
strates significant improvements (approx. 40% improve-
ment) at message sizes below 1024 bytes. That STREAMS
UDP gives a 40% improvement over a wide range of mes-
sage sizes on SMP is a dramatic improvement. Statements
regarding STREAMS networking running poorer on SMP
than on UP are quite wrong, at least with regard to Linux
Fast-STREAMS.

5.4 Mspiggy

Mspiggy is a 1.7Ghz Pentium IV (M-processor) uniprocessor
notebook (Toshiba Satellite 5100) with 1Gb of memory. Linux
distributions tested on this machine are as follows:

Distribution Kernel

SuSE 10.0 OSS 2.6.13-15-default

Note that this is the same distribution that was also tested on
Porky. The purpose of testing on this notebook is to rule out
the differences between machine architectures on the test results.
Tests performed on this machine are control tests.

5.4.1 SuSE 10.0 OSS

SuSE 10.0 OSS is the public release version of the SuSE/Novell
distribution. There have been two releases subsequent to this
one: the 10.1 and recent 10.2 releases. The SuSE 10 release
sports a 2.6.13 kernel and the 2.6.13-15-default kernel was the
tested kernel.

Performance. Figure 36 plots the measured performance of
Sockets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes, and staggering improvements at large mes-
sage sizes.

Delay. Figure 37 plots the average message delay of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates significant improvements at all
message sizes, and staggering improvements at large mes-
sage sizes.

The slope of the STREAMS delay curve is much lower than
(almost half that of) the Sockets delay curve, indicating that
STREAMS is exploiting some memory efficiencies not pos-
sible in the Sockets implementation.

Throughput. Figure 38 plots the effective throughput of Sock-
ets compared to XTI over Socket and XTI approaches.
STREAMS demonstrates improvements at all message sizes.

12

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 32: CentOS 5.0 on Daisy Performance

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

0.00001

0.00002

0.00002

0.00003

0.00003

0.00004

0.00004

0.00005

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

D
el

ay

Message Size (Bytes)

Figure 33: CentOS 5.0 on Daisy Delay

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 34: CentOS 5.0 on Daisy Throughput

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 35: CentOS 5.0 on Daisy Comparison

As can be seen from Figure 38, all implementations exhibit
strong power function characteristics (at least at lower write
sizes), indicating structure and robustness for each imple-
mentation.

The Linux NET4 UDP implementation results deviate more
sharply from power function behaviour at high message
sizes. One contributing factor is the fact that neither the
send nor receive buffers can be set above about 111,000 bytes
on this version of Linux 2.6 kernel running on this speed
of processor. Tests were performed with send and receive
buffer size requests of 131,072 bytes. Both the STREAMS
XTI over Sockets UDP implementation and the Linux NET4
UDP implementation suffer from the maximum buffer size,
whereas, the STREAMS UDP implementation implements
and permits the larger buffers.

Improvement. Figure 39 plots the comparison of Sockets to
XTI over Socket and XTI approaches. STREAMS demon-
strates significant improvements all message sizes.

The more dramatic improvements over Linux NET4 UDP
and XTI over Sockets UDP is likely due in part to the re-
striction on buffer sizes in 2.6 on slower processors as de-
scribed above.

Unfortunately, this SuSE 10.0 OSS system does not appear
to have acted as a very good control system. The differ-
ences in maximum buffer size make any differences from
other tested behaviour obvious.

6 Analysis

With some caveats as described at the end of this section, the
results are consistent enough across the various distributions and
machines tested to draw some conclusions regarding the efficiency
of the implementations tested. This section is responsible for
providing an analysis of the results and drawing conclusions con-
sistent with the experimental results.

6.1 Discussion

The test results reveal that the maximum throughput perfor-
mance, as tested by the netperf program, of the STREAMS
implementation of UDP is superior to that of the Linux NET4
Sockets implementation of UDP. In fact, STREAMS implemen-
tation performance at smaller message sizes is significantly (as
much as 30-40%) greater than that of Linux NET4 UDP. As the
common belief is that STREAMS would exhibit poorer perfor-
mance, this is perhaps a startling result to some.

Looking at both implementations, the differences can be de-
scribed by implementation similarities and differences:

Send processing. When Linux NET4 UDP receives a send re-
quest, the available send buffer space is checked. If the current
data would cause the send buffer fill to exceed the send buffer
maximum, either the calling process blocks awaiting available
buffer, or the system call returns with an error (ENOBUFS). If the
current send request will fit into the send buffer, a socket buffer
(skbuff) is allocated, data is copied from user space to the buffer,
and the socket buffer is dispatched to the IP layer for transmis-
sion.

Linux 2.6 kernels have an amazing amount of special case code
that gets executed for even a simple UDP send operation. Linux
2.4 kernels are far more direct. The result is the same, even
though they are different in the depths to which they must delve
before discovering that a send is just a simple send. This might
explain part of the rather striking differences between the per-
formance comparison between STREAMS and NET4 on 2.6 and
2.4 kernels.

13

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

M
es

sa
g
e

R
at

e
(M

es
sa

g
es

 p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 36: SuSE 10.0 OSS Mspiggy Performance

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

 2048 4096 8192 16384

D
el

ay
 (

S
ec

o
n
d
s

p
er

 M
es

sa
g
e)

D
el

ay

Message Size (Bytes)

Figure 37: SuSE 10.0 OSS Mspiggy Delay

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p
er

 S
ec

o
n
d
)

|

Message Size (Bytes)

Figure 38: SuSE 10.0 OSS Mspiggy Throughput

Streams Tx
Streams Rx
Sockets Tx
Sockets Rx
XTIoS Tx
XTIoS Rx

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n
ta

g
e

Im
p
ro

v
em

en
t

(o
v
er

 S
o
ck

et
s)

|

Message Size (Bytes)

Figure 39: SuSE 10.0 OSS Mspiggy Comparison

When the STREAMS Stream head receives a putmsg(2) re-
quest, it checks downstream flow control. If the Stream is flow
controlled downstream, either the calling process blocks awaiting
succession of flow control, or the putmsg(2) system call returns
with an error (EAGAIN). if the Stream is not flow controlled on the
write side, message blocks are allocated to hold the control and
data portions of the request and the message blocks are passed
downstream to the driver. When the driver receives an M DATA or
M PROTO message block from the Stream head, in its put proce-
dure, it simply queues it to the driver write queue with putq(9).
putq(9) will result in the enabling of the service procedure for
the driver write queue under the proper circumstances. When
the service procedure runs, messages will be dequeued from the
driver write queue transformed into IP datagrams and sent to the
IP layer for transmission on the network interface.

Linux Fast-STREAMS has a feature whereby the driver can
request that the Stream head allocate a Linux socket buffer
(skbuff) to hold the data buffer associated with an allocated
message block. The STREAMS UDP driver utilizes this feature
(but the STREAMS XTIoS UDP driver cannot). STREAMS also
has the feature that a write offset can be applied to all data block
allocated and passed downstream. The STREAMS UDP driver
uses this capability also. The write offset set by the tested driver
was a maximum hard header length.

Network processing. Network processing (that is the bottom
end under the transport protocol) for both implementations is ef-
fectively the same, with only minor differences. In the STREAMS
UDP implementation, no sock structure exists, so issuing socket
buffers to the network layer is performed in a slightly more direct
fashion.

Loop-back processing is identical as this is performed by the
Linux NET4 IP layer in both cases.

For Linux Sockets UDP, when the IP layer frees or orphans
the socket buffer, the amount of data associated with the socket
buffer is subtracted from the current send buffer fill. If the current
buffer fill is less than 1/2 of the maximum, all processes blocked
on write or blocked on poll are are woken.

For STREAMS UDP, when the IP layer frees or orphans the
socket buffer, the amount of data associated with the socket
buffer is subtracted from the current send buffer fill. If the cur-
rent send buffer fill is less than the send buffer low water mark
(SO SNDLOWAT or XTI SNDLOWAT), and the write queue is blocked
on flow control, the write queue is enabled.

One disadvantage that it is expected would slow STREAMS
UDP performance is the fact that on the sending side, a
STREAMS buffer is allocated along with a skbuff and the
skbuff is passed to Linux NET4 IP and the loop-back device.
For Linux Sockets UDP, the same skbuff is reused on both sides
of the interface. For STREAMS UDP, there is (currently) no
mechanism for passing through the original STREAMS message
block and a new message block must be allocated. This results
in two message block allocations per skbuff.

Receive processing. Under Linux Sockets UDP, when a socket
buffer is received from the network layer, a check is performed
whether the associated socket is locked by a user process or not.
If the associated socket is locked, the socket buffer is placed on a
backlog queue awaiting later processing by the user process when
it goes to release the lock. A maximum number of socket buffers
are permitted to be queued against the backlog queue per socket
(approx. 300).

If the socket is not locked, or if the user process is processing
a backlog before releasing the lock, the message is processed:
the receive socket buffer is checked and if the received message
would cause the buffer to exceed its maximum size, the message
is discarded and the socket buffer freed. If the received message

14

fits into the buffer, its size is added to the current send buffer
fill and the message is queued on the socket receive queue. If a
process is sleeping on read or in poll, an immediate wakeup is
generated.

In the STREAMS UDP implementation on the receive side,
again there is no sock structure, so the socket locking and back-
log techniques performed by UDP at the lower layer do not ap-
ply. When the STREAMS UDP implementation receives a socket
buffer from the network layer, it tests the receive side of the
Stream for flow control and, when not flow controlled, allocates a
STREAMS buffer using esballoc(9) and passes the buffer directly
to the upstream queue using putnext(9). When flow control is in
effect and the read queue of the driver is not full, a STREAMS
message block is still allocated and placed on the driver read
queue. When the driver read queue is full, the received socket
buffer is freed and the contents discarded. While different in
mechanism from the socket buffer and backlog approach taken
by Linux Sockets UDP, this bottom end receive mechanism is
similar in both complexity and behaviour.

Buffering. For Linux Sockets, when a send side socket buffer is
allocated, the true size of the socket buffer is added to the current
send buffer fill. After the socket buffer has been passed to the
IP layer, and the IP layer consumes (frees or orphans) the socket
buffer, the true size of the socket buffer is subtracted from the
current send buffer fill. When the resulting fill is less than 1/2
the send buffer maximum, sending processes blocked on send or
poll are woken up. When a send will not fit within the maximum
send buffer size considering the size of the transmission and the
current send buffer fill, the calling process blocks or is returned
an error (ENOBUFS). Processes that are blocked or subsequently
block on poll(2) will not be woken up until the send buffer fill
drops beneath 1/2 of the maximum; however, any process that
subsequently attempts to send and has data that will fit in the
buffer will be permitted to proceed.

STREAMS networking, on the other hand, performs queueing,
flow control and scheduling on both the sender and the receiver.
Sent messages are queued before delivery to the IP subsystem.
Received messages from the IP subsystem are queued before de-
livery to the receiver. Both side implement full hysteresis high
and low water marks. Queues are deemed full when they reach
the high water mark and do not enable feeding processes or sub-
systems until the queue subsides to the low water mark.

Scheduling. Linux Sockets schedule by waking a receiving pro-
cess whenever data is available in the receive buffer to be read,
and waking a sending process whenever there is one-half of the
send buffer available to be written. While accomplishing buffer-
ing on the receive side, full hysteresis flow control is only per-
formed on the sending side. Due to the way that Linux handles
the loop-back interface, the full hysteresis flow control on the
sending side is defeated.

STREAMS networking, on the other hand, uses the queueing,
flow control and scheduling mechanism of STREAMS. When mes-
sages are delivered from the IP layer to the receiving stream head
and a receiving process is sleeping, the service procedure for the
reading stream head ’s read queue is scheduled for later execution.
When the STREAMS scheduler later runs, the receiving process
is awoken. When messages are sent on the sending side they are
queued in the driver’s write queue and the service procedure for
the driver’s write queue is scheduled for later execution. When
the STREAMS scheduler later runs, the messages are delivered to
the IP layer. When sending processes are blocked on a full driver
write queue, and the count drops to the low water mark defined
for the queue, the service procedure of the sending stream head
is scheduled for later execution. When the STREAMS scheduler
later runs, the sending process is awoken.

Linux Fast-STREAMS is designed to run tasks queued to the
STREAMS scheduler on the same processor as the queueing pro-
cessor or task. This avoid unnecessary context switches.

The STREAMS networking approach results in fewer blocking
and wakeup events being generated on both the sending and re-
ceiving side. Because there are fewer blocking and wakeup events,
there are fewer context switches. The receiving process is per-
mitted to consume more messages before the sending process is
awoken; and the sending process is permitted to generate more
messages before the reading process is awoken.

Result The result of the differences between the Linux NET
and the STREAMS approach is that better flow control is be-
ing exerted on the sending side because of intermediate queueing
toward the IP layer. This intermediate queueing on the sending
side, not present in BSD-style networking, is in fact responsi-
ble for reducing the number of blocking and wakeup events on
the sender, and permits the sender, when running, to send more
messages in a quantum.

On the receiving side, the STREAMS queueing, flow control
and scheduling mechanisms are similar to the BSD-style software
interrupt approach. However, Linux does not use software inter-
rupts on loop-back (messages are passed directly to the socket
with possible backlogging due to locking). The STREAMS ap-
proach is more sophisticated as it performs backlogging, queueing
and flow control simultaneously on the read side (at the stream
head).

6.2 Caveats

The following limitations in the test results and analysis must be
considered:

6.2.1 Loop-back Interface

Tests compare performance on loop-back interface only. Several
characteristics of the loop-back interface make it somewhat dif-
ferent from regular network interfaces:

1. Loop-back interfaces do not require checksums.

2. Loop-back interfaces have a null hard header.

This means that there is less difference between putting each
data chunk in a single packet versus putting multiple data
chunks in a packet.

3. Loop-back interfaces have negligible queueing and emission
times, making RTT times negligible.

4. Loop-back interfaces do not normally drop packets.

5. Loop-back interfaces preserve the socket buffer from sending
to receiving interface.

This also provides an advantage to Sockets TCP. Because
STREAMS SCTP cannot pass a message block along with
the socket buffer (socket buffers are orphaned before passing
to the loop-back interface), a message block must also be
allocated on the receiving side.

7 Conclusions

These experiments have shown that the Linux Fast-STREAMS
implementation of STREAMS UDP as well as STREAMS UDP
using XTIoS networking outperforms the Linux Sockets UDP im-
plementation by a significant amount (up to 40% improvement).

The Linux Fast-STREAMS implementation of
STREAMS UDP networking is superior by a signifi-
cant factor across all systems and kernels tested.

All of the conventional wisdom with regard to STREAMS and
STREAMS networking is undermined by these test results for
Linux Fast-STREAMS.

15

• STREAMS is fast.

Contrary to the preconception that STREAMS must be
slower because it is more general purpose, in fact the reverse
has been shown to be true in these experiments for Linux
Fast-STREAMS. The STREAMS flow control and schedul-
ing mechanisms serve to adapt well and increase both code
and data cache as well as scheduler efficiency.

• STREAMS is more flexible and more efficient.

Contrary to the preconception that STREAMS trades flex-
ibility or general purpose architecture for efficiency (that
is, that STREAMS is somehow less efficient because it is
more flexible and general purpose), in fact has shown to
be untrue. Linux Fast-STREAMS is both more flexible and
more efficient. Indeed, the performance gains achieved by
STREAMS appear to derive from its more sophisticated
queueing, scheduling and flow control model.

• STREAMS better exploits parallelisms on SMP better than
other approaches.

Contrary to the preconception that STREAMS must be
slower due to complex locking and synchronization mech-
anisms, Linux Fast-STREAMS performed better on SMP
(hyperthreaded) machines than on UP machines and out-
performed Linux Sockets UDP by and even more significant
factor (about 40% improvement at most message sizes). In-
deed, STREAMS appears to be able to exploit inherent par-
allelisms that Linux Sockets is unable to exploit.

• STREAMS networking is fast.

Contrary to the preconception that STREAMS networking
must be slower because STREAMS is more general pur-
pose and has a rich set of features, the reverse has been
shown in these experiments for Linux Fast-STREAMS. By
utilizing STREAMS queueing, flow control and scheduling,
STREAMS UDP indeed performs better than Linux Sockets
UDP.

• STREAMS networking is neither unnecessarily complex nor
cumbersome.

Contrary to the preconception that STREAMS networking
must be poorer because of use of a complex yet general pur-
pose framework has shown to be untrue in these experiments
for Linux Fast-STREAMS. Also, the fact that STREAMS
and Linux conform to the same standard (POSIX), means
that they are no more cumbersome from a programming per-
spective. Indeed a POSIX conforming application will not
known the difference between the implementation (with the
exception that superior performance will be experienced on
STREAMS networking).

8 Future Work

Local Transport Loop-back

UNIX domain sockets are the advocated primary interprocess
communications mechanism in the 4.4BSD system: 4.4BSD
even implements pipes using UNIX domain sockets [MBKQ97].
Linux also implements UNIX domain sockets, but uses the
4.1BSD/SVR3 legacy approach to pipes. XTI has an equiva-
lent to the UNIX domain socket. This consists of connection-
less, connection oriented, and connection oriented with orderly
release loop-back transport providers. The netperf program has
the ability to test UNIX domain sockets, but does not currently
have the ability to test the XTI equivalents.

BSD claims that in 4.4BSD pipes were implemented using sock-
ets (UNIX domain sockets) instead of using the file system as
they were in 4.1BSD [MBKQ97]. One of the reasons cited for
implementing pipes on Sockets and UNIX domain sockets using

the networking subsystems was performance. Another paper re-
leased by the OpenSS7 Project [SS7] shows that experimental re-
sults on Linux file-system based pipes (using the SVR3 or 4.1BSD
approaches) perform poorly when compared to STREAMS-based
pipes. Because Linux uses a similar approach to file-system based
pipes in implementation of UNIX domain sockets, it can be ex-
pected that UNIX domain sockets under Linux will also perform
poorly when compared to loop-back transport providers under
STREAMS.

Sockets interface to STREAMS

There are several mechanisms to providing BSD/POSIX Sockets
interfaces to STREAMS networking [VS90] [Mar01]. The ex-
periments in this report indicate that it could be worthwhile to
complete one of these implementations for Linux Fast-STREAMS
[Soc] and test whether STREAMS networking using the Sockets
interface is also superior to Linux Sockets, just as it has been
shown to be with the XTI/TPI interface.

9 Related Work

A separate paper comparing the STREAMS-based pipe imple-
mentation of Linux Fast-STREAMS to the legacy 4.1BSD/SVR3-
style Linux pipe implementation has also been prepared. That
paper also shows significant performance improvements for
STREAMS attributable to similar causes.

A separate paper comparing a STREAMS-based SCTP imple-
mentation of Linux Fast-STREAMS to the Linux NET4 Sockets
approach has also been prepared. That paper also shows signif-
icant performance improvements for STREAMS attributable to
similar causes.

References

[GC94] Berny Goodheart and James Cox. The magic gar-
den explained: the internals of UNIX System V Re-
lease 4, an open systems design / Berny Goodheart
& James Cox. Prentice Hall, Australia, 1994. ISBN
0-13-098138-9.

[Jon07] Rick Jones. Network performance with netperf – An
OpenSS7 Modified Version. http://www.openss7.-
org/download.html, 2007.

[LfS] Linux Fast-STREAMS – A High-Performance SVR
4.2 MP STREAMS Implementation for Linux.
http://www.openss7.org/download.html.

[LiS] Linux STREAMS (LiS). http://www.openss7.org/-
download.html.

[LML] Linux Kernel Mailing List – Frequently Asked
Questions. http://www.kernel.org/pub/linux/docs/-
lkml/#s9-9.

[Mar01] Jim Mario. Solaris sockets, past and present. Unix
Insider, September 2001.

[MBKQ97] Marshall Kirk McKusick, Keith Bostic, Michael J.
Karels, and John S. Quaterman. The design and
implementation of the 4.4BSD operating system.
Addison-Wesley, third edition, November 1997. ISBN
0-201-54979-4.

[OG] The Open Group. http://www.opengroup.org/.

[RBD97] Vincent Roca, Torsten Braun, and Christophe Diot.
Demultiplexed architectures: A solution for efficient
STREAMS-based communications stacks. IEEE
Network, July/August 1997.

16

[Rit84] Dennis M. Ritchie. A Stream Input-output Sys-
tem. AT&T Bell Laboratories Technical Journal,
63(8):1897–1910, October 1984. Part 2.

[Soc] Sockets for linux fast-streams. http://www.openss7.-
org/download.html.

[SS7] The OpenSS7 Project. http://www.openss7.org/.

[SUS95] Single UNIX Specification, Version 1. Open Group
Publication, The Open Group, 1995. http://www.-
opengroup.org/onlinepubs/.

[SUS98] Single UNIX Specification, Version 2. Open Group
Publication, The Open Group, 1998. http://www.-
opengroup.org/onlinepubs/.

[SUS03] Single UNIX Specification, Version 3. Open Group
Publication, The Open Group, 2003. http://www.-
opengroup.org/onlinepubs/.

[TLI92] Transport Provider Interface Specification, Revision
1.5. Technical Specification, UNIX International,
Inc., Parsipanny, New Jersey, December 10 1992.
http://www.openss7.org/docs/tpi.pdf.

[TPI99] Transport Provider Interface (TPI) Specification,
Revision 2.0.0, Draft 2. Technical Specification, The
Open Group, Parsipanny, New Jersey, 1999. http://-
www.opengroup.org/onlinepubs/.

[VS90] Ian Vessey and Glen Skinner. Implementing Berkeley
Sockets in System V Release 4. In Proceedings of the
Winter 1990 USENIX Conference. USENIX, 1990.

[XNS99] Network Services (XNS), Issue 5.2, Draft 2.0. Open
Group Publication, The Open Group, 1999. http://-
www.opengroup.org/onlinepubs/.

[XTI99] XOpen Tranport Interface (XTI). Technical Stan-
dard XTI/TLI Revision 1.0, X Programmer’s Group,
1999. http://www.opengroup.org/onlinepubs/.

17

A Netperf Benchmark Script

Following is a listing of the netperf benchmark script used to
generate raw data points for analysis:

#!/bin/bash
set -x
(

sudo killall netserver
sudo netserver >/dev/null </dev/null 2>/dev/null &
sleep 3
netperf_udp_range -x /dev/udp2 \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}
netperf_udp_range \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}
netperf_udp_range -x /dev/udp \

--testtime=10 --bufsizes=131071 --end=16384 ${1+"$@"}
sudo killall netserver

) 2>&1 | tee ‘hostname‘.‘date -uIminutes‘.log

B Raw Data

Following are the raw data points captured using the
netperf benchmark script:

Table 1 lists the raw data from the netperf program that was
used in preparing graphs for Fedora Core 6 (i386) on Porky.

Table 2 lists the raw data from the netperf program that was
used in preparing graphs for CentOS 4 on Porky.

Table 3 lists the raw data from the netperf program that was
used in preparing graphs for SuSE OSS 10 on Porky.

Table 4 lists the raw data from the netperf program that was
used in preparing graphs for Ubuntu 6.10 on Porky.

Table 5 lists the raw data from the netperf program that was
used in preparing graphs for RedHat 7.2 on Pumbah.

Table 6 lists the raw data from the netperf program that was
used in preparing graphs for Fedora Core 6 (x86 64) HT on Daisy.

Table 7 lists the raw data from the netperf program that was
used in preparing graphs for SuSE 10.0 OSS on Mspiggy.

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 714927 714928 947084 947085 740775 728170
2 717371 717372 934792 934793 745202 732710
4 713453 713454 938505 938506 750541 730419
8 704000 704001 935024 935025 745011 724798

16 697051 697052 930898 930899 746454 731250
32 688597 688598 931763 931764 748286 731657
64 686784 686785 939694 939695 740980 722478

128 674447 674448 930575 930576 742196 723733
256 657051 657052 907451 907452 740007 717115
512 651677 651678 902984 902985 718341 708200

1024 619363 619364 868516 868517 712384 693917
2048 559866 559867 793259 793260 684433 674277
4096 459220 459221 706605 706606 629194 612532
8192 367311 367312 627682 627683 554245 541436

16384 249573 249574 469472 469473 446906 437599

Table 1: FC6 on Porky Raw Data

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 849555 849556 1167336 1167337 861219 860982
2 845106 845107 1171086 1171087 860981 860257
4 848669 848670 1171198 1171199 863027 862307
8 828520 828521 1158247 1158248 859350 858899

16 835946 835947 1163405 1163406 856881 856418
32 837624 837625 1145328 1145329 861550 861133
64 824114 824115 1156624 1156625 850320 849599

128 811344 811345 1160676 1160677 847531 846980
256 813958 813959 1154616 1154617 842601 841396
512 804584 804585 1164623 1164624 833461 832452

1024 767812 767813 1118676 1118677 808018 806991
2048 693760 693761 1050507 1050508 766594 765236
4096 561885 561886 920261 920262 682312 681197
8192 437609 437610 678034 678035 598846 597855

16384 268808 268809 590358 590359 478197 477303

Table 2: CentOS 4 on Porky Raw Data

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 573781 573782 713504 713505 594660 594467
2 567733 567734 720039 720040 587883 587791
4 569997 569998 729645 729646 589438 589229
8 567197 567198 734516 734517 589559 589416

16 568657 568658 686428 686429 593745 593600
32 571096 571097 689929 689930 594827 594671
64 570663 570664 705258 705259 593679 593128

128 567062 567063 706918 706919 592829 592829
256 568372 568373 716627 716628 585737 585338
512 565382 565383 675129 675130 581023 580381

1024 546251 546252 633631 633632 576955 576220
2048 510822 510823 627276 627277 556534 555734
4096 437420 437421 577926 577927 518700 517611
8192 353468 353469 528576 528577 458838 458081

16384 258953 258954 455257 455258 378575 377998

Table 3: SuSE OSS 10 on Porky Raw Data

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 529545 529546 662574 662575 615243 615243
2 529833 529834 662749 662750 615219 615219
4 529409 529410 662601 662602 614769 614769
8 526374 526375 652110 652111 614941 614941

16 527462 527463 654046 654047 614494 614494
32 525083 525084 649961 649962 614532 614532
64 524388 524389 648902 648903 613586 613586

128 521954 521955 650092 650093 612867 612867
256 508588 508589 644845 644846 598102 598102
512 505348 505349 642097 642098 595758 595758

1024 481918 481919 623680 623681 590474 590474
2048 451341 451342 600956 600957 568011 568011
4096 390587 390588 552289 552290 529874 529874
8192 304485 304486 499277 499278 466069 466069

16384 232667 232668 405488 405489 391741 391741

Table 4: Ubuntu 6.10 on Porky Raw Data

18

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 1133043 1133044 1560516 1560517 1422429 1422429
2 1136533 1136534 1562461 1562462 1418493 1418493
4 1136695 1136696 1578993 1578994 1415739 1415129
8 1142312 1142313 1578110 1578111 1415738 1415129

16 1139623 1139624 1571645 1571646 1412013 1411527
32 1140659 1140660 1573956 1573957 1418429 1418429
64 1136007 1136008 1574064 1574065 1406332 1406332

128 1106231 1106232 1541064 1541065 1370828 1370828
256 1073676 1073677 1535408 1535409 1358240 1357444
512 1026932 1026933 1517692 1517693 1299434 1299434

1024 941481 941482 1455261 1455262 1211158 1211158
2048 793802 793803 1351690 1351691 1073543 1073543
4096 610252 610253 1216734 1216735 872281 872281
8192 416164 416165 1033488 1033489 644953 644953

16384 248762 248763 780198 779901 419478 419478

Table 5: RedHat 7.2 on Pumbah Raw Data

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 553383 553384 1009820 1009820 731713 731713
2 550020 550021 1005658 1005659 726596 726596
4 549600 549601 993347 993348 733634 733634
8 549073 549074 1000195 1000196 724320 724320

16 549514 549515 1000525 1000526 725440 725440
32 548447 548447 1007185 1007186 728707 728707
64 545329 545330 994739 994740 720612 720612

128 540519 540520 999002 999003 722801 722801
256 521171 521172 994474 994475 723606 723606
512 508589 508590 982028 982029 709207 709207

1024 483899 483900 951564 951565 707136 707136
2048 446004 446005 897395 897396 688775 688775
4096 387509 387510 795327 795328 650128 650128
8192 302141 302142 677573 677573 605011 605011

16384 211149 211150 505129 505130 503729 503729

Table 6: Fedora Core 6 (x86 64) HT on Daisy Raw Data

Message XTIoS XTI Sockets
Size Tx Rx Tx Rx Tx Rx

1 479564 479565 591461 591462 482975 481652
2 480678 480679 592805 592806 481606 480276
4 478366 478367 593255 593256 480746 479680
8 473615 473616 589930 589931 479021 477301

16 471973 471974 585814 585815 478449 476241
32 474980 474981 585272 585273 480508 478812
64 466618 466619 587244 587245 474745 472577

128 465623 465624 582449 582450 472031 470381
256 458158 458159 587534 587534 466018 463747
512 446356 446357 586409 586410 450769 448312

1024 421072 421073 567213 567214 435038 433157
2048 368990 368991 543818 543819 397745 395329
4096 290402 290403 500380 500381 344058 341942
8192 218918 218919 438956 438957 265907 264098

16384 137005 137006 348956 348957 192224 191737

Table 7: SuSE 10.0 OSS on Mspiggy Raw Data

19

