
Multiplex Interface (MXI) Specification

Multiplex Interface (MXI)

Specification
Version 1.1 Edition 7.20141001

Updated October 25, 2014
Distributed with Package openss7-1.1.7.20141001

Copyright c© 2008-2014 Monavacon Limited
All Rights Reserved.

Abstract:

This document is a Specification containing technical details concerning the implemen-
tation of the Multiplex Interface (MXI) for OpenSS7. It contains recommendations
on software architecture as well as platform and system applicability of the Multiplex
Interface (MXI). It provides abstraction of the Multiplex (MX) interface to these com-
ponents as well as providing a basis for Multiplex control for other Multiplex protocols.

Brian Bidulock <bidulock@openss7.org> for

The OpenSS7 Project <http://www.openss7.org/>

mailto:bidulock@openss7.org
http://www.openss7.org/

Published by:

OpenSS7 Corporation
1469 Jefferys Crescent
Edmonton, Alberta T6L 6T1
Canada

Copyright c© 2008-2014 Monavacon Limited
Copyright c© 2001-2008 OpenSS7 Corporation
Copyright c© 1997-2000 Brian F. G. Bidulock

All Rights Reserved.

Unauthorized distribution or duplication is prohibited.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled [GNU Free Documentation License], page 121.

Permission to use, copy and distribute this documentation without modification, for any purpose
and without fee or royalty is hereby granted, provided that both the above copyright notice and
this permission notice appears in all copies and that the name of OpenSS7 Corporation not be
used in advertising or publicity pertaining to distribution of this documentation or its contents
without specific, written prior permission. OpenSS7 Corporation makes no representation about
the suitability of this documentation for any purpose. It is provided “as is” without express or
implied warranty.

Notice:

OpenSS7 Corporation disclaims all warranties with regard to this documentation including all im-
plied warranties of merchantability, fitness for a particular purpose, non-infringement, or title; that
the contents of the document are suitable for any purpose, or that the implementation of such
contents will not infringe on any third party patents, copyrights, trademarks or other rights. In no
event shall OpenSS7 Corporation be liable for any direct, indirect, special or consequential dam-
ages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with any use of this
document or the performance or implementation of the contents thereof.

http://www.openss7.com/
http://www.monavacon.com/
http://www.openss7.com/
mailto:bidulock@openss7.org

i

Short Contents

Preface . 3

1 Introduction . 7

2 The Multiplex Layer . 9

3 MXI Services Definition . 15

4 MXI Service Primitives . 25

5 MXI Input-Output Controls . 61

6 MXI Management . 73

A MXI Header Files . 75

B MXI Drivers and Modules . 87

C MXI Applications . 89

D MXI Utilities . 99

E MXI File Formats . 101

F MXI Compatibility and Porting . 103

Glossary . 105

Acronyms . 107

References . 109

Licenses . 111

Index . 129

iii

Table of Contents

Preface . 3
Notice . 3
Abstract . 3

Purpose . 3
Intent . 3
Audience . 3

Revision History . 3
Version Control . 4

ISO 9000 Compliance . 4
Disclaimer . 4
U.S. Government Restricted Rights . 4

Acknowledgements . 4

1 Introduction . 7
1.1 Related Documentation . 7

1.1.1 Role . 7
1.2 Definitions, Acronyms, Abbreviations . 7

2 The Multiplex Layer . 9
2.1 Model of the MXI . 9
2.2 MXI Services . 10

2.2.1 Local Management . 10
2.2.2 Protocol . 10

2.3 Purpose of the MXI . 11
2.4 Multiplex Addressing . 11

2.4.1 Physical Attachment Identification . 11
2.4.2 MXS Provider Styles . 12

2.4.2.1 Style 1 MXS Provider . 12
2.4.2.2 Style 2 MXS Provider . 12

2.4.3 Multiplex Media . 12
2.5 Multiplex Parameters . 13

3 MXI Services Definition . 15
3.1 Local Management Services . 15

3.1.1 Acknowledgement Service . 15
3.1.2 Information Reporting Service . 16
3.1.3 Physical Point of Attachment Service . 16

3.1.3.1 PPA Attachment Service . 17
3.1.3.2 PPA Detachment Service . 17

3.1.4 Initialization Service . 18
3.1.4.1 Interface Enable Service . 18
3.1.4.2 Interface Disable Service . 19

3.1.5 Options Management Service . 19
3.1.6 Error Reporting Service . 20
3.1.7 Statistics Reporting Service . 20
3.1.8 Event Reporting Service . 21

iv Multiplex Interface (MXI)

3.2 Protocol Services . 21
3.2.1 Connection Service . 21
3.2.2 Data Transfer Service . 22
3.2.3 Disconnection Service . 23

4 MXI Service Primitives . 25
4.1 Local Management Service Primitives . 25

4.1.1 Acknowledgement Service Primitives . 25
4.1.1.1 MX OK ACK . 25
4.1.1.2 MX ERROR ACK . 27

4.1.2 Information Reporting Service Primitives . 29
4.1.2.1 MX INFO REQ . 29
4.1.2.2 MX INFO ACK . 30

4.1.3 Physical Point of Attachment Service Primitives 32
4.1.3.1 MX ATTACH REQ . 32
4.1.3.2 MX DETACH REQ . 34

4.1.4 Initialization Service Primitives . 35
4.1.4.1 MX ENABLE REQ . 35
4.1.4.2 MX ENABLE CON . 37
4.1.4.3 MX DISABLE REQ . 38
4.1.4.4 MX DISABLE CON . 39
4.1.4.5 MX DISABLE IND . 40

4.1.5 Options Management Service Primitives . 41
4.1.5.1 MX OPTMGMT REQ . 41
4.1.5.2 MX OPTMGMT ACK . 43

4.1.6 Event Reporting Service Primitives . 45
4.1.6.1 MX ERROR IND . 45
4.1.6.2 MX STATS IND . 47
4.1.6.3 MX EVENT IND . 48

4.2 Protocol Service Primitives . 50
4.2.1 Connection Service Primitives . 50

4.2.1.1 MX CONNECT REQ . 50
4.2.1.2 MX CONNECT CON . 52

4.2.2 Data Transfer Service Primitives . 53
4.2.2.1 MX DATA REQ . 53
4.2.2.2 MX DATA IND . 54

4.2.3 Disconnection Service Primitives . 55
4.2.3.1 MX DISCONNECT REQ . 55
4.2.3.2 MX DISCONNECT CON . 57
4.2.3.3 MX DISCONNECT IND . 58

4.3 Diagnostics Requirements . 59
4.3.1 Non-Fatal Error Handling Facility . 59
4.3.2 Fatal Error Handling Facility . 59

v

5 MXI Input-Output Controls . 61
5.1 MXI Configuration . 61

5.1.1 MXI Get Configuration . 63
5.1.2 MXI Set Configuration . 63
5.1.3 MXI Test Configuration . 63
5.1.4 MXI Commit Configuration . 63

5.2 MXI Options . 63
5.3 MXI State . 63

5.3.1 MXI Get State . 67
5.3.2 MXI Reset State . 67

5.4 MXI Statistics . 67
5.5 MXI Events . 69

5.5.1 MXI Get Notify . 69
5.5.2 MXI Set Notify . 69
5.5.3 MXI Clear Notify . 69

5.6 MXI Commands . 70
5.6.1 MXI Command . 70

6 MXI Management . 73

Appendix A MXI Header Files . 75
A.1 MXI Header File Listing . 75
A.2 MXI Input-Output Controls Header File Listing . 83

Appendix B MXI Drivers and Modules 87
B.1 MXI Drivers . 87

B.1.1 MXI Pseudo-device Drivers . 87
B.1.1.1 Multiplexing Driver—mx . 87
B.1.1.2 Multiplexing Driver—mxmux . 87
B.1.1.3 Switching Matrix Multiplexing Driver—matrix 87

B.1.2 MXI Device Drivers . 87
B.1.2.1 Device Driver—v401p . 87

B.2 MXI Modules . 88
B.2.1 Modules that convert MXI . 88

B.2.1.1 Compression Conversion—mx-conv . 88
B.2.2 Modules that convert from MXI . 88
B.2.3 Modules that convert to MXI . 88

B.2.3.1 Real-Time Protocol Module—rtp . 88

Appendix C MXI Applications . 89
C.1 MXI in Switch Matrix . 89
C.2 MXI in Zaptel Driver . 90
C.3 MXI in Y.1453 TDM-IP Module . 90
C.4 MXI in IAX Module . 90
C.5 MXI in SS7 Stack . 90
C.6 MXI in ISDN Stack . 93
C.7 MXI in X.25 Stack . 94
C.8 MXI in Frame Relay Stack . 95
C.9 MXI in Media Gateway . 96

vi Multiplex Interface (MXI)

Appendix D MXI Utilities . 99

Appendix E MXI File Formats . 101

Appendix F MXI Compatibility and Porting 103

Glossary . 105

Acronyms . 107

References . 109

Licenses . 111
GNU Affero General Public License . 111

Preamble . 111
How to Apply These Terms to Your New Programs 120

GNU Free Documentation License . 121

Index . 129

Multiplex Interface (MXI) Table of Contents

List of Figures

Figure 2.1: Model of the MXI . 9
Figure 2.2: Multiplex Addressing Components . 11
Figure 3.1: Message Flow: Successful Acknowledgement Service . 15
Figure 3.2: Message Flow: Unsuccessful Acknowledgement Service . 15
Figure 3.3: Message Flow: Successful Information Reporting Service . 16
Figure 3.4: Message Flow: Successful Attachment Service . 17
Figure 3.5: Message Flow: Successful Detachment Service . 18
Figure 3.6: Message Flow: Successful Enable Service . 18
Figure 3.7: Message Flow: Successful Disable Service . 19
Figure 3.8: Message Flow: Successful Options Management Service . 20
Figure 3.9: Message Flow: Successful Error Reporting Service . 20
Figure 3.10: Message Flow: Successful Statistics Reporting Service . 21
Figure 3.11: Message Flow: Successful Event Reporting Service . 21
Figure 3.12: Message Flow: Successful Connection Service . 22
Figure 3.13: Message Flow: Successful Data Transfer Service . 22
Figure 3.14: Message Flow: Successful Disconnection Service by SDLS User 23
Figure 3.15: Message Flow: Successful Disconnection Service by SDLS Provider 23
Figure C.1: Switch Matrix . 89
Figure C.2: SS7 Protocol Stack . 92
Figure C.3: ISDN Protocol Stack . 93
Figure C.4: X.25 Protocol Stack . 94
Figure C.5: Frame Relay Protocol Stack . 96
Figure C.6: Media Gateway . 97

2014-10-25 1

List of Tables

Table 2.1: Local Management Services . 10
Table 2.2: Protocol Services . 10

2 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) Preface

Preface

Notice

Software in this document and related software is released under the AGPL (see [GNU Affero General
Public License], page 111). Please note, however, that there are different licensing terms for some
of the manual package and some of the documentation. Consult permission notices contained in the
documentation of those components for more information.

This document is released under the FDL (see [GNU Free Documentation License], page 121) with
no invariant sections, no front-cover texts and no back-cover texts.

Abstract

This document is a Specification containing technical details concerning the implementation of the
Multiplex Interface (MXI) for OpenSS7. It contains recommendations on software architecture as
well as platform and system applicability of the Multiplex Interface (MXI).

This document specifies a Multiplex Interface (MXI) Specification in support of the OpenSS7 Mul-
tiplex (MX) protocol stacks. It provides abstraction of the Multiplex interface to these components
as well as providing a basis for Multiplex control for other Multiplex protocols.

Purpose

The purpose of this document is to provide technical documentation of the Multiplex Interface
(MXI). This document is intended to be included with the OpenSS7 STREAMS software package
released by OpenSS7 Corporation. It is intended to assist software developers, maintainers and
users of the Multiplex Interface (MXI) with understanding the software architecture and technical
interfaces that are made available in the software package.

Intent

It is the intent of this document that it act as the primary source of information concerning the
Multiplex Interface (MXI). This document is intended to provide information for writers of OpenSS7
Multiplex Interface (MXI) applications as well as writers of OpenSS7 Multiplex Interface (MXI)
Users.

Audience

The audience for this document is software developers, maintainers and users and integrators of the
Multiplex Interface (MXI). The target audience is developers and users of the OpenSS7 SS7 stack.

Revision History

Take care that you are working with a current version of this documentation: you will not be
notified of updates. To ensure that you are working with a current version, check the OpenSS7
Project website for a current version.

A current version of this specification is normally distributed with the OpenSS7 package, openss7-
1.1.7.20141001.1

1 http://www.openss7.org/repos/tarballs/openss7-1.1.7.20141001.tar.bz2

2014-10-25 3

http://www.openss7.org/
http://www.openss7.org/
http://www.openss7.org/repos/tarballs/openss7-1.1.7.20141001.tar.bz2

Preface

Version Control

Although the author has attempted to ensure that the information in this document is complete and
correct, neither the Author nor OpenSS7 Corporation will take any responsibility in it. OpenSS7
Corporation is making this documentation available as a reference point for the industry. While
OpenSS7 Corporation believes that these interfaces are well defined in this release of the document,
minor changes may be made prior to products conforming to the interfaces being made available.
OpenSS7 Corporation reserves the right to revise this software and documentation for any reason,
including but not limited to, conformity with standards promulgated by various agencies, utilization
of advances in the state of the technical arts, or the reflection of changes in the design of any
techniques, or procedures embodied, described, or referred to herein. OpenSS7 Corporation is under
no obligation to provide any feature listed herein.

$Log: mxi.texi,v $

Revision 1.1.2.2 2011-02-07 02:21:41 brian

- updated manuals

Revision 1.1.2.1 2009-06-21 10:54:32 brian

- added files to new distro

ISO 9000 Compliance

Only the TEX, texinfo, or roff source for this maual is controlled. An opaque (printed, postscript or
portable document format) version of this manual is a UNCONTROLLED VERSION.

Disclaimer

OpenSS7 Corporation disclaims all warranties with regard to this documentation including all im-
plied warranties of merchantability, fitness for a particular purpose, non-infrincement, or title; that
the contents of the manual are suitable for any purpose, or that the implementation of such con-
tents will not infringe on any third party patents, copyrights, trademarks or other rights. In no
event shall OpenSS7 Corporation be liable for any direct, indirect, special or consequential dam-
ages or any damages whatsoever resulting from loss of use, data or profits, whether in an action or
contract, negligence or other tortious action, arising out of or in connection with any use of this
documentation or the performance or implementation of the contents thereof.

U.S. Government Restricted Rights

If you are licensing this Software on behalf of the U.S. Government ("Government"), the following
provisions apply to you. If the Software is supplied by the Department of Defense ("DoD"), it is clas-
sified as "Commercial Computer Software" under paragraph 252.227-7014 of the DoD Supplement
to the Federal Aquisition Regulations ("DFARS") (or any successor regulations) and the Govern-
ment is acquiring only the license rights granded herein (the license rights customarily provided to
non-Government users). If the Software is supplied to any unit or agency of the Government other
than DoD, it is classified as "Restricted Computer Software" and the Government’s rights in the
Software are defined in paragraph 52.227-19 of the Federal Acquisition Regulations ("FAR") (or any
successor regulations) or, in the cases of NASA, in paragraph 18.52.227-86 of the NASA Supplerment
to the FAR (or any successor regulations).

Acknowledgements

The OpenSS7 Project was funded in part by:

4 Version 1.1 Rel. 7.20141001

http://www.openss7.org/

Multiplex Interface (MXI) Preface

• Monavacon Limited

• OpenSS7 Corporation

Thanks to the subscribers to and sponsors of The OpenSS7 Project. Without their support, open
software like this would not be possible.

As with most open source projects, this project would not have been possible without the valiant
efforts and productive software of the Free Software Foundation, the Linux Kernel Community, and
the open source software movement at large.

2014-10-25 5

http://www.monavacon.com/
http://www.openss7.com/
http://www.openss7.org/
http://www.fsf.org/
http://www.kernel.org/

Multiplex Interface (MXI) Introduction

1 Introduction

This document specifies a STREAMS-based kernel-level instantiation of the Multiplex Interface
(MXI) definition. The Multiplex Interface (MXI) enables the user of a multiplex service to ac-
cess and use any of a variety of conforming multiplex providers without specific knowledge of the
provider’s protocol. The service interface is designed to support any network multiplex protocol.
This interface only specifies access to multiplex service providers, and does not address issues con-
cerning multiplex management, protocol performance, and performance analysis tools.

This specification assumes that the reader is familiar with ITU-T state machines and multiplex
interface (e.g. G.703, G.704), and STREAMS.

1.1 Related Documentation

— ITU-T Recommendation G.703 (White Book)

— ITU-T Recommendation G.704 (White Book)

— ANSI T1

— System V Interface Definition, Issue 2 - Volume 3

1.1.1 Role

This document specifies an interface that supports the services provided by the Multiplex for ITU-T,
ANSI and ETSI applications as described in ITU-T Recommendation G.703 and ITU-T Recommen-
dation G.704. These specifications are targeted for use by developers and testers of protocol modules
that require multiplex service.

1.2 Definitions, Acronyms, Abbreviations

LM Local Management.

LMS Local Management Service.

LMS User A user of Local Management Services.

LMS Provider
A provider of Local Management Services.

ISO International Organization for Standardization

OSI Open Systems Interconnection

QOS Quality of Service

STREAMS A communication services development facility first available with UNIX System V
Release 3.

2014-10-25 7

Multiplex Interface (MXI) The Multiplex Layer

2 The Multiplex Layer

The Multiplex Layer provides the means to manage the association of MX-Users info connections.
It is responsible for the routing and management of data to and from multiplex connections between
MX-user entities.

2.1 Model of the MXI

The MXI defines the services provided by the multiplex layer to the multiplex user at the boundary
between the multiplex provider and the multiplex user entity. The interface consists of a set of
primitives defined as STREAMS messages that provide access to the multiplex layer services, and
are transferred between the MXS user entity and the MXS provider. These primitives are of two
types; ones that originate from the MXS user, and others that originate from the MXS provider.
The primitives that originate from the MXS user make requests to the MXS provider, or respond to
an indication of an event of the MXS provider. The primitives that originate from the MXS provider
are either confirmations of a request or are indications to the MXS user that an event has occurred.
Figure 2.1 show the model of the MXI.� �

Data Link

User

Data Link

Provider

Channel

Provider

Communications Device

Provider

Request/Response

Primitives

Kernel

User

Indication/Confirmation

Primitives

MXI

CDI

DLPI

Figure 2.1: Model of the MXI
 	
The MXI allows the MXS provider to be configured with any multiplex layer user (such as a signalling
data terminal application) that also conforms to the MXI. A multiplex layer user can also be a user
program that conforms to the MXI and accesses the MXS provider via putmsg(2s) and getmsg(2s)
system calls. The typical configuration, however, is to place a signalling data terminal module above
the multiplex layer.

2014-10-25 9

Chapter 2: The Multiplex Layer

2.2 MXI Services

The features of the MXI are defined in terms of the services provided by the MXS provider, and the
individual primitives that may flow between the MXS user and the MXS provider.

The MXI Services are broken into two groups: local management services and protocol services.
Local management services are responsible for the local management of Streams, assignment of
Streams to physical points of attachment, enabling and disabling of Streams, management of op-
tions associated with a Stream, and general acknowledgement and event reporting for the Stream.
Protocol services consist of connecting a Stream to a medium, exchanging bits with the medium,
and disconnecting the Stream from the medium.

2.2.1 Local Management

Local management services are listed in Table 2.1.

Phase Service Primitives

Local

Management

Acknowledgement MX_OK_ACK, MX_ERROR_ACK

Information

Reporting

MX_INFO_REQ, MX_INFO_ACK

PPA Attachment MX_ATTACH_REQ, MX_DETACH_REQ,

MX_OK_ACK

Initialization MX_ENABLE_REQ, MX_ENABLE_CON,

MX_DISABLE_REQ, MX_DISABLE_CON

Options

Management

MX_OPTMGMT_REQ, MX_OPTMGMT_ACK

Event Reporting MX_ERROR_IND, MX_STATS_IND,

MX_EVENT_IND

Table 2.1: Local Management Services

The local management services interface is described in Section 3.1 [Local Management Services],
page 15, and the primitives are detailed in Section 4.1 [Local Management Service Primitives],
page 25. The local management services interface is defined by the sys/mxi.h header file (see
Appendix A [MXI Header Files], page 75).

2.2.2 Protocol

Protocol services are listed in Table 2.2.

Phase Service Primitives

Protocol Connection MX_CONNECT_REQ

Data Transfer MX_DAT A_REQ, MX_DAT A_IND

Disconnection MX_DISCONNECT_REQ,

MX_DISCONNECT_IND

Table 2.2: Protocol Services

10 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) The Multiplex Layer

The protocol services interface is described in Section 3.2 [Protocol Services], page 21, and the
primitives are detailed in Section 4.2 [Protocol Service Primitives], page 50. The protocol services
interface is defined by the sys/mxi.h header file (see Appendix A [MXI Header Files], page 75).

2.3 Purpose of the MXI

The MXI is typically implemented as a device driver controlling a TDM (Time Division Mutliplexing)
device that provides access to multiplexes. The purpose behind exposing this low level interface is
that almost all communications multiplex devices can be placed into a raw mode, where a bit stream
can be exchanged between the driver and the medium. The MXI provides an interface that, once
implemented as a driver for a new device, can provide complete and verified data link capabilities by
pushing generic HDLC (High Level Data Link Control) and LAPB (Link Access Procedure Balanced)
modules over an open device Stream.

This allows CDI and DLPI modules to be verified independently for correct operation and then
simply used for all manner of new device drivers that can implement the MXI interface.

2.4 Multiplex Addressing

Each use of MXI must establish an identity to communicate with other multiplex users. The MXS
user must identify the physical medium over which it wil communicate. This is particularly evident
on system that are attached to multiple physical media. Figure 2.2 illustrates the identification
approach, which is explained below.� �

MXS Users

MXS
Provider

PPA

Physical Media

Style 1 Style 2

Figure 2.2: Multiplex Addressing Components
 	
2.4.1 Physical Attachment Identification

The physical point of attachment (PPA in Figure 2.2) is the point at which a system interface
attaches itself to a physical communications medium (a channel, facility or network interface). All
communication on that physical medium funnels through the PPA associated with that physical
medium. On systems where a MXS provider supports more than on physical medium, the MXS
user must identify the medium through which it will communicate. A PPA is identified by a unique
PPA identifier.

For media that supports physical layer multiplexing of multiple channels over a single physical
medium (such as the B and D channels of ISDN), the PPA identifier must identify the specific
channel(s) over which communication will occur. See also [Multiplex Media], page 12.

2014-10-25 11

Chapter 2: The Multiplex Layer

Unlike the Data Link Provider Interface (DLPI), which also uses the concept of a PPA, MXI does
not define a SAP for a MXS user.

Once a Stream has been associated with a PPA, all messages received on that medium are delivered
to the attached MXS user. Only one major/minor device number combination (Stream head) can
be associated with a given PPA and active for a range of channels at any point in time.

2.4.2 MXS Provider Styles

Two styles of MXS provider are defined by MXI, distinguished by the way they enable a MXS user
to choose a particular PPA.

2.4.2.1 Style 1 MXS Provider

The Style 1 provider assigns a PPA based on the major/minor device the MXS user opened. One
possible implementation of a Style 1 driver would reserve a major device for each PPA the multiplex
device driver would support. This would allos the STREAMS clone open feature to be used for each
PPA configured. This style of provider is appropriate when few PPAs will be supported.

For example, a CPI card that supports two V.35 ports could assign a major device number to the
card diver and a minor device number to each of the ports on each card in the system. To establish
a Stream to a MXS provider for a given port, the minor device number ‘1’ or ‘2’ could be opened for
port ‘1’ or ‘2’ on card ‘1’, minor device number ‘3’ or ‘4’ could be opened for port ‘1’ or ‘2’ on card
‘2’, and so on. One major device number for the driver could easily support 127 cards in a system,
which is not possible for typical PCI systems and, therefore, is ample.

Style 1 providers do not user the MX_ATTACH_REQ and MX_DETACH_REQ primitives and when freshly
opened are in the MXS_ATTACHED state. That is, as illustrated in Figure 2.2, the Style 1 MXS provider
associates the Stream with the PPA during the open(2s) system call.

2.4.2.2 Style 2 MXS Provider

If the number of PPAs as MXS provider will support is large, a Style 2 provider implementation is
more suitable. The Style 2 provider requires a MXS user to explicitly identify the desired PPA using
a special attach service primitive. For a Style 2 driver, the open(2s) system call creates a Stream
between the MXS user and MXS provider, and the attach primitive then associated a particular
PPA with that Stream. The format of the PPA identifier is specific to the MXS provider, and should
be described in the provider-specific addendum documentation.

The MXS user uses the support primitvies(MX_ATTACH_REQ, MX_ENABLE_REQ) to associate a Stream
with a given Physical Point of Appearance. Style 2 MXS providers, when freshly opened, are in
the MXS_DETACHED state. That is, the Style 2 MXS provider does not associate the Stream with the
PPA during the open(2s) call, but only later when the MX_ATTACH_REQ primitive is issued by the
MXS user.

2.4.3 Multiplex Media

To accommodate multiplexed media and multi-media channels, there are three kinds of PPA address:

1. A discrete PPA that specifies a non-multiplexed medium.

This is the normal case of a Style 1 or Style 2 MXS provider supporting access to a non-
multiplexed medium. An example is a MXS provider supporting access to a V.35 interface.

2. A specific PPA that specifies a single channel to a multiplexed medium.

This is again the normal case of a Style 1 or Style 2 MXS provider supporting access to a
specific channel in a multiplexed medium. An example is a MXS provider supporting access to
channel 16 of a E1 interface.

12 Version 1.1 Rel. 7.20141001

http://www.openss7.org/man2html?open(2s)
http://www.openss7.org/man2html?open(2s)
http://www.openss7.org/man2html?open(2s)

Multiplex Interface (MXI) The Multiplex Layer

3. A general PPA that specifies a channel group for a multiplexed medium.

This is th case of a Style 1 or Style 2 MXS provider supporting access to multiple channels
in a multiplexed medium. An example is a MXS provider supporting statistically multiplexed
channel access to a full or fractional T1 facilitiy. Another example is access to the left and right
channels of a stereo program.

In the case of a general PPA, as enumerated in 3 above, some additional information is required to
identify which slots in the group of channle forming the multiplex are associatedw the the MXS
user Stream. This additional information is provided using the mx slot parameter to the MX_

CONNECT_REQ, MX_CONNECT_CON, MX_DATA_REQ, MX_DATA_IND, MX_EVENT_IND, MX_DISCONNECT_REQ,
MX_DISCONNECT_CON and MX_DISCONNECT_IND primitives.1

2.5 Multiplex Parameters

1 Note that it is the ability of the Multiplex Interface to support fractional E1/T1 that distinguishes it from
similar interfaces such as the SDLI and CDI.

2014-10-25 13

Multiplex Interface (MXI) MXI Services Definition

3 MXI Services Definition

3.1 Local Management Services

3.1.1 Acknowledgement Service

The acknowledgement service provides the MXS user with the ability to receive positive and negative
acknowledgements regarding the successful or unsuccessful completion of services.

• MX_OK_ACK: The MX_OK_ACK message is used by the MXS provider to indicate successful receipt
and completion of a service primitive request that requires positive acknowledgement.

• MX_ERROR_ACK: The MX_ERROR_ACK message is used by the MXS provider to indicate successful
receipt and failure to complete a service primitive request that requires negative acknowledge-
ment.

A successful invocation of the acknowledgement service is illustrated in Figure 3.1.� �
MX_*

request

MX_OK

acknowledgement

where MX_* is:

MX_DETACH

MX_CONNECT

MX_DISCONNECT

MX_ATTACH

Figure 3.1: Message Flow: Successful Acknowledgement Service
 	
As illustrated in Figure 3.1, the service primitives for which a positive acknowledgement may be
returned are the MX_ATTACH_REQ and MX_DETACH_REQ.

An unsuccessful invocation of the acknowledgement service is illustrated in Figure 3.2.� �
MX_*

request

MX_ERROR

acknowledgement

where MX_* is:

MX_INFO

MX_ATTACH

MX_DETACH

MX_ENABLE

MX_DISABLE

MX_OPTMGMT

MX_CONNECT

MX_DISCONNECT

Figure 3.2: Message Flow: Unsuccessful Acknowledgement Service
 	
2014-10-25 15

Chapter 3: MXI Services Definition

As illustrated in Figure 3.2, the service primitives for which a negative acknowledgement may be
returned are the MX_INFO_REQ, MX_ATTACH_REQ, MX_DETACH_REQ, MX_ENABLE_REQ, MX_DISABLE_REQ
and MX_OPTMGMT_REQ messages.

3.1.2 Information Reporting Service

The information reporting service provides the MXS user with the ability to elicit information from
the MXS provider.

• MX_INFO_REQ: The MX_INFO_REQ message is used by the MXS user to request information about
the MXS provider.

• MX_INFO_ACK: The MX_INFO_ACK message is issued by the MXS provider to provide requested
information about the MXS provider.

A successful invocation of the information reporting service is illustrated in Figure 3.3.� �
MX_INFO

request

MX_INFO

acknowledgement

Figure 3.3: Message Flow: Successful Information Reporting Service
 	
3.1.3 Physical Point of Attachment Service

The local management interface provides the MXS user with the ability to associate a Stream to a
physical point of appearance (PPA) or to disassociate a Stream from a PPA. The local management
interface provides for two styles of MXS provider:1

Style 1 MXS Provider

A Style 1 MXS provider is a provider that associates a Stream with a PPA at the time of the
first open(2s) call for the device, and disassociates a Stream from a PPA at the time of the last
close(2s) call for the device.

Physical points of attachment (PPA) are assigned to major and minor device number combinations.
When the major and minor device number combination is opened, the opened Stream is automati-
cally associated with the PPA for the major and minor device number combination. The last close
of the device disassociates the PPA from the Stream.

Freshly opened Style 1 MXS provider Streams start life in the MX_DISABLED state.

This approach is suitable for MXS providers implemented as real or pseudo-device drivers and is
applicable when the number of minor devices is small and static.

1 See also Section 2.4 [Multiplex Addressing], page 11.

16 Version 1.1 Rel. 7.20141001

http://www.openss7.org/man2html?open(2s)
http://www.openss7.org/man2html?close(2s)

Multiplex Interface (MXI) MXI Services Definition

Style 2 MXS Provider

A Style 2 MXS provider is a provider that associates a Stream with a PPA at the time that the
MXS user issues the MX_ATTACH_REQ message. Freshly opened Streams are not associated with any
PPA. The Style 2 MXS provider Stream is disassociated from a PPA when the Stream is closed or
when the MXS user issues the MX_DETACH_REQ message.

Freshly opened Style 2 MXS provider Streams start life in the MX_UNATTACHED state.

This approach is suitable for MXS providers implemented as clone real or pseudo-device drivers and
is applicable when the number of minor devices is large or dynamic.

3.1.3.1 PPA Attachment Service

The PPA attachment service provides the MXS user with the ability to attach a Style 2 MXS
provider Stream to a physical point of appearance (PPA).

• MX_ATTACH_REQ: The MX_ATTACH_REQ message is issued by the MXS user to request that a
Style 2 MXS provider Stream be attached to a specified physical point of appearance (PPA).

• MX_OK_ACK: Upon successful receipt and processing of the MX_ATTACH_REQ message, the MXS
provider acknowledges the success of the service completion with a MX_OK_ACK message.

• MX_ERROR_ACK: Upon successful receipt but failure to process the MX_ATTACH_REQ message, the
MXS provider acknowledges the failure of the service completion with a MX_ERROR_ACKmessage.

A successful invocation of the attachment service is illustrated in Figure 3.4.� �
MX_ATTACH

request

MX_OK

acknowledgement

Figure 3.4: Message Flow: Successful Attachment Service
 	
3.1.3.2 PPA Detachment Service

The PPA detachment service provides the MXS user with the ability to detach a Style 2 MXS
provider Stream from a physical point of attachment (PPA).

• MX_DETACH_REQ: The MX_DETACH_REQ message is issued by the MXS user to request that a Style
2 MXS provider Stream be detached from the attached physical point of appearance (PPA).

• MX_OK_ACK: Upon successful receipt and processing of the MX_DETACH_REQ message, the MXS
provider acknowledges the success of the service completion with a MX_OK_ACK message.

• MX_ERROR_ACK: Upon successful receipt but failure to process the MX_DETACH_REQ message, the
MXS provider acknowledges the failure of the service completion with a MX_ERROR_ACKmessage.

A successful invocation of the detachment service is illustrated in Figure 3.5.

2014-10-25 17

Chapter 3: MXI Services Definition

� �
MX_DETACH

request

MX_OK

acknowledgement

Figure 3.5: Message Flow: Successful Detachment Service
 	
3.1.4 Initialization Service

The initialization service provides the MXS user with the abilty to enable and disable the Stream
for the associated PPA.

3.1.4.1 Interface Enable Service

The interface enable service provides the MXS user with the ability to enable an MXS provider
Stream that is associated with a PPA. Enabling the interface permits the MXS user to exchange
protocol service interface messages with the MXS provider.

• MX_ENABLE_REQ: The MX_ENABLE_REQ message is issued by the MXS user to request that the
protocol service interface be enabled.

• MX_ENABLE_CON: Upon successful enabling of the protocol service interface, the MXS provider
acknowledges successful completion of the service by issuing a MX_ENABLE_CON message to the
MXS user.

• MX_ERRORK_ACK: Upon unsuccessful enabling of the protocol service interface, the MXS provider
acknowledges the failure to complete the service by issuing an MX_ERROR_ACK message to the
MXS user.

A successful invocation of the enable service is illustrated in Figure 3.6.� �

MX_ENABLE

confirmation

MX_ENABLE

request

Figure 3.6: Message Flow: Successful Enable Service
 	
18 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Services Definition

3.1.4.2 Interface Disable Service

The interface disable service provides the MXS user with the ability to disable an MXS provider
Stream that is associated with a PPA. Disabling the interface withdraws the MXS user’s ability to
exchange protocol service interface messages with the MXS provider.

• MX_DISABLE_REQ: The MX_DISABLE_REQ message is issued by the MXS user to request that the
protocol service interface be disabled.

• MX_DISABLE_CON: Upon successful disabling of the protocol service interface, the MXS provider
acknowledges successful completion of the service by issuing a MX_DISABLE_CON message to the
MXS user.

• MX_ERRORK_ACK: Upon unsuccessful disabling of the protocol service interface, the MXS
provider acknowledges the failure to complete the service by issuing an MX_ERROR_ACK message
to the MXS user.

• MX_DISABLE_IND: The MX_DISABLE_IND message is used by the MXS provider to indicate to the
MXS user that the Stream has been autonomously disabled and the cause of the autonomous
disabling.

A successful invocation of the disable service is illustrated in Figure 3.7.� �

MX_DISABLE

confirmation

MX_DISABLE

request

Figure 3.7: Message Flow: Successful Disable Service
 	
3.1.5 Options Management Service

The options management service provides the MXS user with the ability to control and affect various
generic and provider-specific options associated with the MXS provider.

• MX_OPTMGMT_REQ: The MXS user issues a MX_OPTMGMT_REQ message when it wishes to inter-
rogate or affect the setting of various generic or provider-specific options associated with the
MXS provider for the Stream upon which the message is issued.

• MX_OPTMGMT_ACK: Upon successful receipt of the MX_OPTMGMT_REQ message, and successful op-
tions processing, the MXS provider acknowledges the successful completion of the service with
an MX_OPTMGMT_ACK message.

• MX_ERROR_ACK: Upon successful receipt of the MX_OPTMGMT_REQ message, and unsuccessful
options processing, the MXS provider acknowledges the failure to complete the service by
issuing an MX_ERROR_ACK message to the MXS user.

A successful invocation of the options management service is illustrated in Figure 3.8.

2014-10-25 19

Chapter 3: MXI Services Definition

� �
MX_OPTMGMT

request

MX_OPTMGMT

acknowledgement

Figure 3.8: Message Flow: Successful Options Management Service
 	

3.1.6 Error Reporting Service

The error reporting service provides the MXS provider with the ability to indicate asynchronous
errors to the MXS user.

• MX_ERROR_IND: The MXS provider issues the MX_ERROR_IND message to the MXS user when
it needs to indicate an asynchronous error (such as the unusability of the communications
medium).

A successful invocation of the error reporting service is illustrated in Figure 3.9.� �

MX_ERROR

indication

Figure 3.9: Message Flow: Successful Error Reporting Service
 	

3.1.7 Statistics Reporting Service

• MX_STATS_IND:

A successful invocation of the statistics reporting service is illustrated in Figure 3.10.

20 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Services Definition

� �

MX_STATS

indication

Figure 3.10: Message Flow: Successful Statistics Reporting Service
 	
3.1.8 Event Reporting Service

The event reporting service provides the MXS provider with the ability to indicate specific asyn-
chronous management events to the MXS user.

• MX_EVENT_IND: The MXS provider issues the MX_EVENT_IND message to the MXS user when it
wishes to indicate an asynchronous (management) event to the MXS user.

A successful invocation of the event reporting service is illustrated in Figure 3.11.� �

MX_EVENT

indication

Figure 3.11: Message Flow: Successful Event Reporting Service
 	
3.2 Protocol Services

Protocol services are specific to the Multiplex interface. These services consist of connection services
that permit the transmit and receive directions to be connected to or disconnected from the medium,
and data transfer services that permit the exchange of bits between MXS users.

The service primitives that implement the protocol services are described in detail in Section 4.2
[Protocol Service Primitives], page 50.

3.2.1 Connection Service

The connection service provides the ability for the MXS user to connect to the medium for the
purpose of transmitting bits, receiving bits, or both. In the OSI model, this is a Layer 1 function,
possibly the responsibility of multiplex or digital cross-connect switch.

2014-10-25 21

Chapter 3: MXI Services Definition

• MX_CONNECT_REQ: The MX_CONNECT_REQ message is used by the MXS user to request that the
Stream be connected to the medium. Connection to the medium might require some switching
or other mechanism to prepare the Stream for data transmission and reception. Connections
can be formed for the receive direction or the transmit direction independently.

• MX_CONNECT_CON: The MX_CONNECT_CON message is used by the MXS provider to confirm that
the Stream has been connected to the medium. Connection to the medium may have required
some switching or other mechanism to prepare the Stream for data transmission and receptoin.
Connection can be confirmed for the receive or transmit directions independently.

A successful invocation of the connection service is illustrated in Figure 3.12.� �
MX_CONNECT

request

confirm

MX_CONNECT

Figure 3.12: Message Flow: Successful Connection Service
 	
3.2.2 Data Transfer Service

The data transfer service provides the MXS user with the ability to request that bits be transmitted
on the medium, and the MXS provider with the ability to indicate bits that have been received from
the medium.

• MX_DATA_REQ: The MX_DATA_REQ message is used by the MXS user to place raw bits onto the
medium. The Stream must have first been successfully activated in the transmit direction using
the MX_CONNECT_REQ message.

• MX_DATA_IND: The MX_DATA_IND message is issued by the MXS provider when activated for the
receive direction with the MX_CONNECT_REQ message, to indicate bits received on the medium.

A successful invocation of the data transfer service is illustrated in Figure 3.13.� �
MX_DATA

request

MX_DATA

indication

Figure 3.13: Message Flow: Successful Data Transfer Service
 	
22 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Services Definition

3.2.3 Disconnection Service

The disconnection service provides the ability for the MXS user to disconnect from the medium,
withdrawing from the purpose of transmitting bits, receiving bits, or both. It allows the MXS
provider to autonomously indicate that the medium has been disconnected from the Stream. In
OSI, this is a Layer 1 function, possibly the responsibilyt of a multiplex or digital cross-connect
switch.

• MX_DISCONNECT_REQ: The MX_DISCONNECT_REQ message is used by the MXS user to request
that the Stream be disconnected from the medium. Disconnection from the medium might
require some switching or other mechanism. Disconnection can be performed for the receive
direction or the transmit direction independently.

• MX_DISCONNECT_CON: The MX_DISCONNECT_CONmessage is used by the MXS provider to confirm
that the Stream has been disconnected from the medium. Disconnect from the medium might
require some switching or other mechanism. Disconnection can be confirmed for the receive or
transmit directions independently.

• MX_DISCONNECT_IND: The MX_DISCONNECT_IND message is used by the MXS provider to indi-
cate to the MXS user that the Stream has been disconnected from the medium. Disconnection
is indicated for both the receive and transmit directions.

A successful invocation of the disconnection service by the MXS user is illustrated in Figure 3.14.� �
MX_DISCONNECT

request

confirm

MX_DISCONNECT

Figure 3.14: Message Flow: Successful Disconnection Service by SDLS User
 	
A successful invocation of the disconnection service by the MXS provider is illustrated in Figure 3.15.� �

MX_DISCONNECT

indication

Figure 3.15: Message Flow: Successful Disconnection Service by SDLS Provider
 	

2014-10-25 23

Multiplex Interface (MXI) MXI Service Primitives

4 MXI Service Primitives

4.1 Local Management Service Primitives

These service primitives implement the local management services (see Section 3.1 [Local Manage-
ment Services], page 15).

4.1.1 Acknowledgement Service Primitives

These service primitives implement the acknowledgement service (see Section 3.1.1 [Acknowledge-
ment Service], page 15).

4.1.1.1 MX OK ACK

Description

This primitive is used to acknowledge receipt and successful service completion for primitives re-
quiring acknowledgement that have no confirmation primitive.

Format

This primitive consists of one M_PCPROTO message block, structured as follows:

typedef struct MX_ok_ack {

mx_ulong mx_primitive;

mx_ulong mx_correct_prim;

mx_ulong mx_state;

} MX_ok_ack_t;

Parameters

The service primitive contains the following parameters:

mx primitive
Indicates the service primitive type. Always MX_OK_ACK.

mx correct prim
Indicates the service primitive that was received and serviced correctly. This field can
be one of the following values:

MX_ATTACH_REQ Attach request.
MX_ENABLE_REQ Enable request.
MX_CONNECT_REQ Connect request.
MX_DISCONNECT_REQ Disconnect request.
MX_DISABLE_REQ Disable request.
MX_DETACH_REQ Detach Request.

mx state

Indicates the current state of the MXS provider at the time that the primitive was
issued. This field can be one of the following values;

MXS_UNINIT Unitialized.
MXS_UNUSABLE Device cannot be used, Stream in hung state.
MXS_DETACHED No PPA attached, awaiting MX_ATTACH_REQ.

2014-10-25 25

Chapter 4: MXI Service Primitives

MXS_ATTACHED PPA attached, awaiting MX_ENABLE_REQ.
MXS_WCON_EREQ Waiting to send MX_ENABLE_CON.
MXS_WCON_RREQ Waiting to send MX_DISABLE_CON.
MXS_ENABLED Ready for use, awaiting primitive exchange.
MXS_WCON_CREQ Waiting to send MX_CONNECT_CON.
MXS_WCON_DREQ Waiting to send MX_DISCONNECT_CON.
MXS_CONNECTED Connected, active data transfer.

State

This primitive is issued by the MXS provider in the MXS_WACK_AREQ, MXS_WACK_UREQ, MXS_WACK_
CREQ or MXS_WACK_DREQ state.

New State

The new state is MXS_DETACHED, MXS_ATTACHED, MXS_ENABLED or MXS_CONNECTED, depending on the
primitive to which the message is responding.

26 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.1.1.2 MX ERROR ACK

Description

The error acknowledgement primitive is used to acknowledge receipt and unsuccessful service com-
pletion for primitives requiring acknowledgement.

Format

The error acknowledgement primitive consists of one M_PCPROTOmessage block, structured as follows:

typedef struct MX_error_ack {

mx_ulong mx_primtive;

mx_ulong mx_error_primitive;

mx_ulong mx_error_type;

mx_ulong mx_unix_error;

mx_ulong mx_state;

} MX_error_ack_t;

Parameters

The error acknowledgement primitive contains the following parameters:

mx primitive
Indicates the primitive type. Always MX_ERROR_ACK.

mx error type
Indicates the MX error number. This field can have one of the following values:

[MXSYSERR] UNIX system error.
[MXBADADDR] Bad address format or content.
[MXOUTSTATE] Interface out of state.
[MXBADOPT] Bad options format or content.
[MXBADPARM] Bad parameter format or content.
[MXBADPARMTYPE] Bad paramater structure type.
[MXBADFLAG] Bad flag.
[MXBADPRIM] Bad primitive.
[MXNOTSUPP] Primitive not supported.
[MXBADSLOT] Bad multplex slot.

mx unix error
Indicates the reason for failure. This field is protocol-specific. When the mx error type
field is [MXSYSERR], the mx unix error field is the UNIX error number as described in
errno(3).

mx error primitive
Indicates the primitive that was in error. This field can have one of the following values:

MX_INFO_REQ Information request.
MX_OPTMGMT_REQ Options management request.
MX_ATTACH_REQ Attach request.
MX_ENABLE_REQ Enable request.
MX_CONNECT_REQ Connect request.
MX_DATA_REQ Data request.
MX_DISCONNECT_REQ Disconnect request.
MX_DISABLE_REQ Disable request.

2014-10-25 27

http://www.openss7.org/man2html?errno(3)

Chapter 4: MXI Service Primitives

MX_DETACH_REQ Detach Request.
MX_INFO_ACK Information acknowledgement.
MX_OPTMGMT_ACK Options Management acknowledgement.
MX_OK_ACK Successful receipt acknolwedgement.
MX_ERROR_ACK Error acknowledgement.
MX_ENABLE_CON Enable confirmation.
MX_CONNECT_CON Connect confirmation.
MX_DATA_IND Data indication.
MX_DISCONNECT_IND Disconnect indication.
MX_DISCONNECT_CON Disconnect confirmation.
MX_DISABLE_IND Disable indication.
MX_DISABLE_CON Disable confirmation.
MX_EVENT_IND Event indication.

mx state

Indicates the state of the MXS provider at the time that the primitive was issued. This
field can have one of the following values:

MXS_UNINIT Unitialized.
MXS_UNUSABLE Device cannot be used, Stream in hung state.
MXS_DETACHED No PPA attached, awaiting MX_ATTACH_REQ.
MXS_WACK_AREQ Waiting for attach.
MXS_WACK_UREQ Waiting for detach.
MXS_ATTACHED PPA attached, awaiting MX_ENABLE_REQ.
MXS_WCON_EREQ Waiting to send MX_ENABLE_CON.
MXS_WCON_RREQ Waiting to send MX_DISABLE_CON.
MXS_ENABLED Ready for use, awaiting primitive exchange.
MXS_WACK_CREQ Waiting acknolwedgement of MX_CONNECT_REQ.
MXS_WCON_CREQ Waiting to send MX_CONNECT_CON.
MXS_WACK_DREQ Waiting acknolwedgement of MX_DISCONNECT_REQ.
MXS_WCON_DREQ Waiting to send MX_DISCONNECT_CON.
MXS_CONNECTED Connected, active data transfer.

State

This primitive can be issued in any state for which a local acknowledgement is not pending. The
MXS provider state at the time that the primitive was issued is indicated in the primitive.

New State

The new state remains unchanged.

28 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.1.2 Information Reporting Service Primitives

These service primitives implement the information reporting service (see Section 3.1.2 [Information
Reporting Service], page 16).

4.1.2.1 MX INFO REQ

Description

This MXS user originated primitive is issued by the MXS user to request that the MXS provider
return information concerning the capabilities and state of the MXS provider.

Format

The primitive consists of one M_PROTO or M_PCPROTO message block, structured as follows:

typedef struct MX_info_req {

mx_ulong mx_primitive;

} MX_info_req_t;

Parameters

This primitive contains the following parameters:

mx primitive
Specifies the primitive type. Always MX_INFO_REQ.

State

This primitive may be issued in any state but only when a local acknowledgement is not pending.

New State

The new state remains unchanged.

Response

This primitive requires the MXS provider to acknowledge receipt of the primitive as follows:

− Successful: The MXS provider is required to acknowledge receipt of the primitive and provide
the requested information using the MX_INFO_ACK primitive.

− Unsuccessful (non-fatal errors): The MXS provider is required to negatively acknowledge the
primtive using the MX_ERROR_ACK primitive, and include the reason for failure in the primitive.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[MXSYSERR] UNIX system error.
[MXBADADDR] Bad address format or content.
[MXOUTSTATE] Interface out of state.
[MXBADOPT] Bad options format or content.
[MXBADPARM] Bad parameter format or content.
[MXBADPARMTYPE] Bad paramater structure type.
[MXBADFLAG] Bad flag.
[MXBADPRIM] Bad primitive.
[MXNOTSUPP] Primitive not supported.
[MXBADSLOT] Bad multplex slot.

2014-10-25 29

Chapter 4: MXI Service Primitives

4.1.2.2 MX INFO ACK

Description

This MXS provider originated primitive acknowledges receipt and successful processing of the MX_

INFO_REQ primitive and provides the requested information concerning the MXS provider.

Format

This message is formatted a one M_PROTO or M_PCPROTO message block, structured as follows:

typedef struct MX_info_ack {

mx_ulong mx_primitive; /* always MX_INFO_ACK */

mx_ulong mx_addr_length; /* multiplex address length */

mx_ulong mx_addr_offset; /* multiplex address offset */

mx_ulong mx_parm_length; /* multiplex paramters length */

mx_ulong mx_parm_offset; /* multiplex paramters offset */

mx_ulong mx_prov_flags; /* provider options flags */

mx_ulong mx_prov_class; /* provider class */

mx_ulong mx_style; /* provider style */

mx_ulong mx_version; /* multiplex interface version */

mx_ulong mx_state; /* multiplex state */

} MX_info_ack_t;

Parameters

The information acknowledgement service primitive has the following parameters:

mx primitive
Indicates the service primitive type. Always MX_INFO_ACK.

mx addr length
Indicates the length of the PPA address to which the provider is attached. When in
states MXS_DETACHED or MXS_WACK_AREQ, this value will be zero (‘0’).

mx addr offset
Indicates the offset, beginning from the start of the M_PCPROTO message block of the
PPA address associated with the provider. When the mx addr length field is zero, this
field is also zero (‘0’).

mx parm length
Indicates the length of the parameters associated with the provider.

mx parm offset
Indicates the offset, beginning from the start of the M_PCPROTO message block, of the
parameters associated with the provider. When the mx parm length field is zero, this
field is also zero (‘0’).

mx prov flags
Indicates the options flags associated with the provider. This is a bitwise OR of zero
or more of the following flags:

mx prov class
Indicates the provider class. This can be one of the following values:

MX_CIRCUIT Circuit provider class.

30 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

mx addr length
This is a variable length field. The length of the field is determined by the length
attribute.

For a Style 2 driver, when mx style is MX_STYLE2, and when in an attached state, this
field provides the current PPA associated with the Stream; the length is typically 4
bytes.

For a Style 1 driver, when mx ppa stype is MX_STYLE1, the length is 0 bytes.

mx style Indicates the PPA style of the MXS provider. This value can be one of the following
values;

MX_STYLE1 PPA is implicitly attached by open(2s).
MX_STYLE2 PPA must be explicitly attached using MX_ATTACH_REQ.

mx version The version of the interface. This version is MX_VERSION_1_1.

MX_VERSION_1_0 Version 1.0 of interface.
MX_VERSION_1_1 Version 1.1 of interface.
MX_VERSION Always the current version of the header file.

mx state Indicates the state of the MXS provider at the time that the information acknolwedge-
ment service primitive wsa issued. This field can be one of the following values:

MXS_UNINIT Unitialized.
MXS_UNUSABLE Device cannot be used, Stream in hung state.
MXS_DETACHED No PPA attached, awaiting MX_ATTACH_REQ.
MXS_WACK_AREQ Waiting for attach.
MXS_WACK_UREQ Waiting for detach.
MXS_ATTACHED PPA attached, awaiting MX_ENABLE_REQ.
MXS_WCON_EREQ Waiting to send MX_ENABLE_CON.
MXS_WCON_RREQ Waiting to send MX_DISABLE_CON.
MXS_ENABLED Ready for use, awaiting primitive exchange.
MXS_WACK_CREQ Waiting acknolwedgement of MX_CONNECT_REQ.
MXS_WCON_CREQ Waiting to send MX_CONNECT_CON.
MXS_WACK_DREQ Waiting acknolwedgement of MX_DISCONNECT_REQ.
MXS_WCON_DREQ Waiting to send MX_DISCONNECT_CON.
MXS_CONNECTED Connected, active data transfer.

State

This primitive can be issued in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

2014-10-25 31

http://www.openss7.org/man2html?open(2s)

Chapter 4: MXI Service Primitives

4.1.3 Physical Point of Attachment Service Primitives

These service primitives implement the physical point of attachment service (see Section 3.1.3 [Phys-
ical Point of Attachment Service], page 16).

4.1.3.1 MX ATTACH REQ

Description

This MXS user originated primitive requests that the Stream upon which the primitive is issued be
associated with the specified Physical Point of Attachment (PPA). This primitive is only applicable
to Style 2 MXS provider Streams, that is, Streams that return MX_STYLE2 in the mx style field of
the MX_INFO_ACK.

Format

This primitive consists of one M_PROTO message block, structured as follows:

typedef MX_attach_req {

mx_ulong mx_primitive;

mx_ulong mx_addr_length;

mx_ulong mx_addr_offset;

mx_ulong mx_flags;

} MX_attach_req_t;

Parameters

The attach request primitive contains the following parameters:

mx primitive
Specifies the service primitive type. Always MX_ATTACH_REQ.

mx addr length
Specifies the Physical Point of Attachment (PPA) to which to associate the Style
2 Stream. This is a variable length identifier whose length is determined by the
mx addr length value. Specifies the length of the Physical Point of Attachment (PPA)
address. The form of the PPA address is provider-specific.

mx addr offset
Specifies the offset, from the beginning of the M_PROTO message block, of the start of
the Physical Point of Attachment (PPA) address.

mx flags Specifies the options flags for attachment. Options flags are provider-specific.

State

This primitive is only valid in state MXS_DETACHED and when a local acknowledgement is not pending.

New State

Upon success, the new state is MXS_WACK_AREQ. Upon failure, the state remains unchanged.

Response

The attach request service primitive requires that the MXS provider respond as follows:

− Successful: The MXS provider acknowledges receipt of the primitive and successful outcome of
the attach service with a MX_OK_ACK primitive. The new state is MXS_ATTACHED.

32 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

− Unsuccessful (non-fatal errors): The MXS provider acknowledges receipt of the primitive and
failure of the attach service with a MX_ERROR_ACK primitive containing the reason for failure.
The new state remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[MXSYSERR] UNIX system error.
[MXBADADDR] Bad address format or content.
[MXOUTSTATE] Interface out of state.
[MXBADOPT] Bad options format or content.
[MXBADPARM] Bad parameter format or content.
[MXBADPARMTYPE] Bad paramater structure type.
[MXBADFLAG] Bad flag.
[MXBADPRIM] Bad primitive.
[MXNOTSUPP] Primitive not supported.
[MXBADSLOT] Bad multplex slot.

2014-10-25 33

Chapter 4: MXI Service Primitives

4.1.3.2 MX DETACH REQ

Description

This MXS user originated primitive requests that the Stream upon which the primitive is issued
be disassociated from the Physical Point of Appearance (PPA) to which it is currently attached.
This primitive is only applicable to Style 2 MXS provider Streams, that is, Streams that return
MX_STYLE2 in the mx style field of the MX_INFO_ACK.

Format

The detach request service primitive consists of one M_PROTO message block, structured as follows:

typedef struct MX_detach_req {

mx_ulong mx_primitive;

} MX_detach_req_t;

Parameters

The detach request service primitive contains the following parameters:

mx primitive
Specifies the service primitive type. Always MX_DETACH_REQ.

State

This primitive is valid in the MXS_ATTACHED state and when no local acknowledgement is pending.

New State

Upon success, the new state is MXS_WACK_UREQ. Upon failure, the state remains unchanged.

Response

The detach request service primitive requires that the MXS provider respond as follows:

− Successful: The MXS provider acknowledges receipt of the primitive and successful outcome of
the detach service with a MX_OK_ACK primitive. The new state is MXS_DETACHED.

− Unsuccessful (non-fatal errors): The MXS provider acknowledges receipt of the primitive and
failure of the detach service with a MX_ERROR_ACK primitive containing the reason for failure.
The new state remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[MXSYSERR] UNIX system error.
[MXBADADDR] Bad address format or content.
[MXOUTSTATE] Interface out of state.
[MXBADOPT] Bad options format or content.
[MXBADPARM] Bad parameter format or content.
[MXBADPARMTYPE] Bad paramater structure type.
[MXBADFLAG] Bad flag.
[MXBADPRIM] Bad primitive.
[MXNOTSUPP] Primitive not supported.
[MXBADSLOT] Bad multplex slot.

34 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.1.4 Initialization Service Primitives

Initialization service primitives allow the MXS user to enable or disable the protocol service interface.
Enabling the protocol service interface may require that some action be taken to prepare the protocol
service interface for use or to remove it from use. For example, where the PPA corresponds to a
multiplex identifier as defined in G.703, it may be necessary to perform switching to connect or
disconnect the circuit identification code associated with the multiplex identifier.

These service primitives implement the initialization service (see Section 3.1.4 [Initialization Service],
page 18).

4.1.4.1 MX ENABLE REQ

Description

This MXS user originated primitive requests that the MXS provider perform the actions necessary
to enable the protocol service interface and confirm that it is enabled. This primitive is applicable
to both styles of PPA.

Format

The enable request service primitive consists of one M_PROTO message block, structured as follows:

typedef struct MX_enable_req {

mx_ulong mx_primitive;

mx_ulong mx_addr_length;

mx_ulong mx_addr_offset;

mx_ulong mx_flags;

} MX_enable_req_t;

Parameters

The enable request service primitive contains the following parameters:

mx primitive
Specifies the service primitive type. Always MX_ENABLE_REQ.

mx addr length
Specifies a remote address to which to connect the PPA. The need for and form of this
address is provider-specific. The length of the field is determined by the value of this
field. This remote address could be a circuit identification code, an IP address, or some
other form of circuit or multiplex identifier.

mx addr offset
Specifies the offset, from the beginning of the M_PROTO message block, of the start of
the remote address.

mx flags Specifies the options flags associated with the enable request. Options flags are
provider-specific.

State

This primitive is valid in the MXS_ATTACHED state and when no local acknowledgement is pending.

New State

Upon success the new state is MXS_WCON_EREQ. Upon failure, the state remains unchanged.

2014-10-25 35

Chapter 4: MXI Service Primitives

Response

The enable request service primitive requires that the MXS provider acknowledge receipt of the
primitive as follows:

− Successful: When successful, the MXS provider acknowledges successful completion of the
enable service with a MX_ENABLE_CON primitive. The new state is MXS_ENABLED.

− Unsuccessful (non-fatal errors): When unsuccessful, the MXS provider acknowledges the failure
of the enable service with a MX_ERROR_ACK primitive containing the error. The new state remains
unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[MXSYSERR] UNIX system error.
[MXBADADDR] Bad address format or content.
[MXOUTSTATE] Interface out of state.
[MXBADOPT] Bad options format or content.
[MXBADPARM] Bad parameter format or content.
[MXBADPARMTYPE] Bad paramater structure type.
[MXBADFLAG] Bad flag.
[MXBADPRIM] Bad primitive.
[MXNOTSUPP] Primitive not supported.
[MXBADSLOT] Bad multplex slot.

36 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.1.4.2 MX ENABLE CON

Description

This MXS provider originated primitive is issued by the MXS provider to confirm the successful
completion of the enable service.

Format

The enable confirmation service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct MX_enable_con {

mx_ulong mx_primitive;

mx_ulong mx_addr_length;

mx_ulong mx_addr_offset;

mx_ulong mx_flags;

} MX_enable_con_t;

Parameters

The enable confirmation service primitive contains the following parameters:

mx primitive
Indicates the service primitive type. Always MX_ENABLE_CON.

mx addr length
Confirms the length of the remote address to which the enable is confirmed.

mx addr offset
Confirms the offset, from the beginning of the M_PROTO message block, of the start of
the remote address.

mx flags Confirms the options flags associated with the enable confirmation. Options flags are
provider-specific.

State

This primitive is issued by the MXS provider in the MXS_WCON_EREQ state.

New State

The new state is MXS_ENABLED.

2014-10-25 37

Chapter 4: MXI Service Primitives

4.1.4.3 MX DISABLE REQ

Description

This MXS user originated primitive requests that the MXS provider perform the actions necessary
to disable the protocol service interface and confirm that it is disabled. The primitive is applicable
to both styles of PPA.

Format

The disable request service primitive consists of one M_PROTO message block, structured as follows:

typedef struct MX_disable_req {

mx_ulong mx_primitive;

} MX_disable_req_t;

Parameters

The disable request service primitive contains the following parameters:

mx primitive
Specifies the service primitive type. Always MX_DISABLE_REQ.

State

The disable request service primitive is valid in the MXS_ENABLED state and when no local acknowl-
edgement is pending.

New State

Upon success, the new state is MXS_WCON_RREQ. Upon failure, the state remains unchanged.

Response

The disable request service primitive requires the MXS provider to acknowledge receipt of the prim-
itive as follows:

− Successful: When successful, the MXS provider acknowledges successful completion of the
disable service with an MX_DISABLE_CON primitive. The new state is MXS_ATTACHED.

− Unsuccessful (non-fatal errors): When unsuccessful, the MXS provider acknowledges the failure
of the disable service with a MX_ERROR_ACK primitive containing the error. The new state
remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[MXSYSERR] UNIX system error.
[MXBADADDR] Bad address format or content.
[MXOUTSTATE] Interface out of state.
[MXBADOPT] Bad options format or content.
[MXBADPARM] Bad parameter format or content.
[MXBADPARMTYPE] Bad paramater structure type.
[MXBADFLAG] Bad flag.
[MXBADPRIM] Bad primitive.
[MXNOTSUPP] Primitive not supported.
[MXBADSLOT] Bad multplex slot.

38 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.1.4.4 MX DISABLE CON

Description

This MXS provider originated primitive is issued by the MXS provider to confirm the successful
completion of the disable service.

Format

The disable confirmation service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct MX_disable_con {

mx_ulong mx_primitive;

} MX_disable_con_t;

Parameters

The disable confirmation service primitive contains the following parameters:

mx primitive
Indicates the service primitive type. Always MX_DISABLE_CON.

State

This primitive is issued by the MXS provider in the MXS_WCON_RREQ state.

New State

The new state is MXS_ATTACHED.

2014-10-25 39

Chapter 4: MXI Service Primitives

4.1.4.5 MX DISABLE IND

Description

This MXS provider originated primitive is issued by the MXS provider, if an autonomous event
results in the disabling of the MXS use Stream without an explicity MXS user request.

Format

The disable indication primitive consists of one M_PROTO message block, structured as follows:

typedef struct MX_disable_ind {

mx_ulong mx_primitive;

mx_ulong mx_cause;

} MX_disable_ind_t;

Parameters

mx primitive
Indicates the service primitive type. Always MX_DISABLE_IND.

mx cause Indicates the cause of the autonomous disabling of the MXS user Stream.

State

This primitive will only be issued by the MXS provider in the MXS_ENABLED state.

New State

The new state is MXS_ATTACHED.

40 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.1.5 Options Management Service Primitives

The options management service primitives allow the MXS user to negotiate options with the MXS
provider, retrieve the current and default values of options, and check that values specified for options
are correct.

The options management service primitive implement the options management service (see
Section 3.1.5 [Options Management Service], page 19).

4.1.5.1 MX OPTMGMT REQ

Description

This MXS user originated primitive requests that MXS provider options be managed.

Format

The option management request service primitive consists of one M_PROTO or M_PCPROTO message
block, structured as follows:

typedef struct MX_optmgmt_req {

mx_ulong mx_primitive;

mx_ulong mx_opt_length;

mx_ulong mx_opt_offset;

mx_ulong mx_mgmt_flags;

} MX_optmgmt_req_t;

Parameters

The option management request service primitive contains the following parameters:

mx primitive
Specifies the service primitive type. Always MX_OPTMGMT_REQ.

mx opt length
Specifies the length of the options.

mx opt offset
Specifies the offset, from the beginning of the M_PROTO message block, of the start of
the options.

mx mgmt flags
Specifies the management flags that determine what operation the MXS provider is
expected to perform on the specified options. This field can assume one of the following
values:

MX_NEGOTIATE

Negotiate the specified value of each specified option and return the ne-
gotiated value.

MX_CHECK Check the validity of the specified value of each specified option and return
the result. Do not alter the current value assumed by the MXS provider.

MX_DEFAULT

Return the default value for the specified options (or all options). Do not
alter the current value assumed by the MXS provider.

2014-10-25 41

Chapter 4: MXI Service Primitives

MX_CURRENT

Return the current value for the specified options (or all options). Do not
alter the current value assumed by the MXS provider.

State

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

Response

The option management request service primitive requires the MXS provider to acknowledge receipt
of the primitive as follows:

− Successful: Upon success, the MXS provider acknolwedges receipt of the service primitive and
successful completion of the options management service with an MX_OPTMGMT_ACK primitive
containing the options management result. The state remains unchanged.

− Unsuccessful (non-fatal errors): Upon failure, the MXS provider acknowledges receipt of the
service primitive and failure to complete the options management service with an MX_ERROR_ACK

primitive containing the error. The state remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[MXSYSERR] UNIX system error.
[MXBADADDR] Bad address format or content.
[MXOUTSTATE] Interface out of state.
[MXBADOPT] Bad options format or content.
[MXBADPARM] Bad parameter format or content.
[MXBADPARMTYPE] Bad paramater structure type.
[MXBADFLAG] Bad flag.
[MXBADPRIM] Bad primitive.
[MXNOTSUPP] Primitive not supported.
[MXBADSLOT] Bad multplex slot.

42 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.1.5.2 MX OPTMGMT ACK

Description

This MXS provider originated primitive is issued by the MXS provider upon successful completion
of the options management service. It indicates the outcome of the options management operation
requested by the MXS user in a MX_OPTMGMT_REQ primitive.

Format

The option management acknowledgement service primitive consists of one M_PCPROTO message
block, structured as follows:

typedef struct MX_optmgmt_ack {

mx_ulong mx_primitive;

mx_ulong mx_opt_length;

mx_ulong mx_opt_offset;

mx_ulong mx_mgmt_flags;

} MX_optmgmt_ack_t;

Parameters

The option management acknowledgement service primitive contains the following parameters:

mx primitive
Indicates the service primitive type. Always MX_OPTMGMT_ACK.

mx opt length
Indicates the length of the returned options.

mx opt offset
Indicates the offset of the returned options from the start of the M_PCPROTO message
block.

mx mgmt flags
Indicates the returned management flags. These flags indicate the overall success of
the options management service. This field can assume one of the following values:

MX_SUCCESS

The MXS provider succeeded in negotiating or returning all of the options
specified by the MXS user in the MX_OPTMGMT_REQ primitive.

MX_FAILURE

The MXS provider failed to negotiate one or more of the options specified
by the MXS user.

MX_PARTSUCCESS

The MXS provider negotiated a value of lower quality for one or more of
the options specified by the MXS user.

MX_READONLY

The MXS provider failed to negotiate one or more of the options specified
by the MXS user because the option is treated as read-only by the MXS
provider.

MX_NOTSUPPORT

The MXS provider failed to recognize one or more of the options specified
by the MXS user.

2014-10-25 43

Chapter 4: MXI Service Primitives

State

This primitive is issued by the MXS provider in direct response to a MX_OPTMGMT_REQ primitive.

New State

The new state remains unchangted.

Rules

The MXS provider observes the following rules when processing option management service requests:

— When the mx mgmt flags field in the MX_OPTMGMT_REQ primitive is set to MX_NEGOTIATE, the
MXS provider will attempt to negotiate a value for each of the options specified in the request.

— When the flags are MX_DEFAULT, the MXS provider will return the default values of the specified
options, or the default values of all options known to the MXS provider if no options were
specified.

— When the flags are MX_CURRENT, the MXS provider will return the current values of the specified
options, or all options.

— When the flags are MX_CHECK, the MXS provider will attempt to negotiate a value for each of
the options specified in the request and return the resulg of the negotiation, but will not affect
the current value of the option.

44 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.1.6 Event Reporting Service Primitives

The event reporting service primitives allow the MXS provider to indicate asynchronous errors,
events and statistics collection to the MXS user.

These service primitives implement the event reporting service (see Section 3.1.8 [Event Reporting
Service], page 21).

4.1.6.1 MX ERROR IND

Description

This MXS provider originated service primitive is issued by the MXS provider when it detects and
asynchronous error event. The service primitive is applicable to all styles of PPA.

Format

The error indication service primitive consists of one M_PROTO message block, structured as follows:

typedef struct MX_error_ind {

mx_ulong mx_primitive;

mx_ulong mx_error_type;

mx_ulong mx_unix_error;

mx_ulong mx_state;

} MX_error_ind_t;

Parameters

The error indication service primitive contains the following parameters:

mx primitive
Indicates the service primitive type. Always MX_ERROR_IND.

MX error type
Indicates the MXI error number describing the error. This field can have one of the
following values:

[MXSYSERR] UNIX system error.
[MXBADADDR] Bad address format or content.
[MXOUTSTATE] Interface out of state.
[MXBADOPT] Bad options format or content.
[MXBADPARM] Bad parameter format or content.
[MXBADPARMTYPE] Bad paramater structure type.
[MXBADFLAG] Bad flag.
[MXBADPRIM] Bad primitive.
[MXNOTSUPP] Primitive not supported.
[MXBADSLOT] Bad multplex slot.

mx unix error
Indicates the reason for failure. This field is protocol-specific. When the mx error type
field is [MXSYSERR], the mx unix error field is the UNIX error number as described in
errno(3).

mx state

Indicates the state of the MXS provider at the time that the primitive was issued. This
field can have one of the following values:

2014-10-25 45

http://www.openss7.org/man2html?errno(3)

Chapter 4: MXI Service Primitives

MXS_UNINIT Unitialized.
MXS_UNUSABLE Device cannot be used, Stream in hung state.
MXS_DETACHED No PPA attached, awaiting MX_ATTACH_REQ.
MXS_WACK_AREQ Waiting for attach.
MXS_WACK_UREQ Waiting for detach.
MXS_ATTACHED PPA attached, awaiting MX_ENABLE_REQ.
MXS_WCON_EREQ Waiting to send MX_ENABLE_CON.
MXS_WCON_RREQ Waiting to send MX_DISABLE_CON.
MXS_ENABLED Ready for use, awaiting primitive exchange.
MXS_WACK_CREQ Waiting acknolwedgement of MX_CONNECT_REQ.
MXS_WCON_CREQ Waiting to send MX_CONNECT_CON.
MXS_WACK_DREQ Waiting acknolwedgement of MX_DISCONNECT_REQ.
MXS_WCON_DREQ Waiting to send MX_DISCONNECT_CON.
MXS_CONNECTED Connected, active data transfer.

State

This primitive can be issued in any state for which a local acknowledgement is not pending. The
MXS provider state at the time that the primitive was issued is indicated in the primitive.

New State

The new state remains unchanged.

46 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.1.6.2 MX STATS IND

Description

This MXS provider originated primitive is issued by the MXS provider to indicate a periodic statistics
collection event. The service primitive is applicable to all styles of PPA.

Format

The statistics indication service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct MX_stats_ind {

mx_ulong mx_primitive;

mx_ulong mx_interval;

mx_ulong mx_timestamp;

} MX_stats_ind_t;

Following this structure within the M_PROTO message block is the provider-specific statistics.

Parameters

The statistics indication service primitive contains the following parameters:

mx primitive
Indicates the service primitive type. Always MX_STATS_IND.

mx interval
Indicates the statistics collection interval to which the statistics apply. This interval is
specified in milliseconds.

mx timestamp
Indicates the UNIX time (from epoch) at which statistics were collected. The time-
stamp is given in milliseconds from epoch.

State

This service primitive may be issued by the MXS provider in any state in which a local acknowl-
edgement is not pending.

New State

The new state remains unchanged.

2014-10-25 47

Chapter 4: MXI Service Primitives

4.1.6.3 MX EVENT IND

Description

This MXS provider originated primitive is issued by the MXS provider to indicate an asynchronous
event. The service primitive is applicable to all styles of PPA.

Format

The event indication service primitive consists of one M_PROTO message block, structured as follows:

typedef struct MX_event_ind {

mx_ulong mx_primitive;

mx_ulong mx_event;

mx_ulong mx_slot;

} MX_event_ind_t;

Following this structure within the M_PROTO message block is the provider-specific event information.

Parameters

THe event indication service primitive contains the following parameters:

mx primitive
Indicates the service primitive type. Always MX_EVENT_IND.

mx event Indicates the provider-specific event that has occured.

MXF_EVT_DCD_ASSERT Data carrier detect lead asserted.
MXF_EVT_DCD_DEASSERT Data carrier detect lead deasserted.
MXF_EVT_DSR_ASSERT Data set ready lead asserted.
MXF_EVT_DSR_DEASSERT Data set ready lead deasserted.
MXF_EVT_DTR_ASSERT Data terminal ready lead asserted.
MXF_EVT_DTR_DEASSERT Data terminal ready lead deasserted.
MXF_EVT_RTS_ASSERT Request to send lead asserted.
MXF_EVT_RTS_DEASSERT Request to send lead deasserted.
MXF_EVT_CTS_ASSERT Clear to send lead asserted.
MXF_EVT_CTS_DEASSERT Clear to send lead deasserted.
MXF_EVT_RI_ASSERT Ring indicator asserted.
MXF_EVT_RI_DEASSERT Ring indicator deasserted.
MXF_EVT_YEL_ALARM Yellow alarm condition.
MXF_EVT_BLU_ALARM Blue alarm condition.
MXF_EVT_RED_ALARM Red alarm condition.
MXF_EVT_NO_ALARM Alarm recovery condition.

mx slot Where the PPA is associated with a multiplexed medium, this parameter indicates the
slots within the mutliplexed media to which the event corresponds. The form of the
slot specification is provider- and media-specific. See also [Multiplex Media], page 12.

Where the PPA specifies a single channel for a medium, this parameter is set to zero
(‘0’) by the MXS provider on MXS provider originated primitives and is ignored by
the MXS provider on MXS user originated primitives.

48 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

State

This service primitive can be issued by the MXS provider in any state where a local acknowledgement
is not pending. Normally the MXS provider must be in the MXS_ENABLED state for event reporting
to occur.

New State

The new state remains unchanged.

2014-10-25 49

Chapter 4: MXI Service Primitives

4.2 Protocol Service Primitives

Protocol service primitives implement the Multiplex Interface protocol. Protocol service primitives
provide the MXS user with the ability to connect transmission or reception directions of the bit
stream, pass bits for transmission and accept received bits.

These service primitives implement the protocol services (see Section 3.2 [Protocol Services],
page 21).

4.2.1 Connection Service Primitives

The connection service primitives permit the MXS user to establish a connection between the line
(circuit or channel) and the MXS user in the transmit, receive, or both, directions.

These service primitives implement the connection service (see Section 3.2.1 [Connection Service],
page 21).

4.2.1.1 MX CONNECT REQ

Description

This MXS user originated service primitive allows the MXS user to connect the user Stream to the
medium in the transmit, receive, or both, directions.

Format

The connect request primitive consists of one M_PROTO message block, structured as follows:

typedef struct MX_connect_req {

mx_ulong mx_primitive;

mx_ulong mx_conn_flags;

mx_ulong mx_slot;

} MX_connect_req_t;

Parameters

The connect request service primitive contains the following parameters:

mx primitive
Specifies the service primitive type. Always MX_CONNECT_REQ.

mx conn flags
Specifies the direction in which to connect. This field can contain a bitwise OR of one
or more of the following flags:

MXF_RX_DIR Specifies that the MXS user Stream is to be connected to the
medium in the receive direction.

MXF_TX_DIR Specifies that the MXS user Stream is to be connected to the
medium in the transmit direction.

MXF_MONITOR Specifies that the MXS user Stream is to be connected to the
medium in monitoring (tap) mode.

mx slot Where the PPA is associated with a multiplexed medium, this parameter specifies
the slots within the mutliplexed media to be connected to the MXS User Stream.
The form of the slot specification is provider- and media-specific. See also [Multiplex
Media], page 12.

50 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

Where the PPA specifies a single channel for a medium, this parameter is set to zero
(‘0’) by the MXS provider on MXS provider originated primitives and is ignored by
the MXS provider on MXS user originated primitives.

State

This service primitive is only valid in the MXS_ENABLED state.

New State

The new state is the MXS_WACK_CREQ state.

Response

The connect request service primitive requires that the MXS provider acknowledge receipt of the
primitive as follows:

− Successful: When successful, the MXS provider acknolwedges successful completion of the
connect service wtih a MX_OK_ACK primitive. The new state is MXS_WCON_CREQ. When the MXS
provider eventually completes the connection, it confirms the connection with a MX_CONNECT_

CON primitive and the new state is then MXS_CONNECTED.

− Unsuccessful (non-fatal errors): When unsuccessful, the MXS provider acknowledges the failure
of the connect service with a MX_ERROR_ACK primitive containing the error. The new state
remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[MXSYSERR] UNIX system error.
[MXBADADDR] Bad address format or content.
[MXOUTSTATE] Interface out of state.
[MXBADOPT] Bad options format or content.
[MXBADPARM] Bad parameter format or content.
[MXBADPARMTYPE] Bad paramater structure type.
[MXBADFLAG] Bad flag.
[MXBADPRIM] Bad primitive.
[MXNOTSUPP] Primitive not supported.
[MXBADSLOT] Bad multplex slot.

2014-10-25 51

Chapter 4: MXI Service Primitives

4.2.1.2 MX CONNECT CON

Description

This MXS provider originated service primitive allows the MXS provider to confirm the succesful
completion of the connect servivce with the connection of the user Stream to the medium in the
transmit, receive, or both, directions.

Format

The connect confirmation primitive consists of one M_PROTO message block, structured as follows:

typedef struct MX_connect_con {

mx_ulong mx_primitive;

mx_ulong mx_conn_flags;

mx_ulong mx_slot;

} MX_connect_con_t;

Parameters

mx primitive
Indicates the service primitive type. Always MX_CONNECT_CON.

mx conn flags
Indicates the connect flags. This field is a bitwise OR of zero or more of the following
flags:

MXF_RX_DIR Confirms that the MXS user Stream was connected to the
medium in the receive direction.

MXF_TX_DIR Confirms that the MXS user Stream was connected to the
medium in the transmit direction.

MXF_MONITOR Confirms that the MXS user Stream was connected to the
medium in monitoring (tap) mode.

mx slot Where the PPA is associated with a multiplexed medium, this parameter specifies the
slots within the mutliplexed media that are confirmed connected to the MXS user
Stream. The form of the slot specification is provider- and media-specific. See also
[Multiplex Media], page 12.

Where the PPA specifies a single channel for a medium, this parameter is set to zero
(‘0’) by the MXS provider on MXS provider originated primitives and is ignored by
the MXS provider on MXS user originated primitives.

State

This primitive will only be issued by the MXS provider in the MXS_WCON_CREQ state.

New State

The new state of the interface is the MXS_CONNECTED state.

52 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.2.2 Data Transfer Service Primitives

The data transfer service primitives permit the MXS user to pass bits for transmission to the MXS
provider and accept received bits from the MXS provider.

These service primitives implement the data transfer service (see Section 3.2.2 [Data Transfer Ser-
vice], page 22).

4.2.2.1 MX DATA REQ

Description

This MXS user originated primitive allows the MXS user to specify bits for transmission on the
medium.

Format

The transmission request service primitive consists of one optional M_PROTO message block followed
by one or more M_DATA message blocks containing the bits for transmission. The M_PROTO message
block is structured as follows:

typedef struct MX_data_req {

mx_ulong mx_primitive;

mx_ulong mx_slot;

} MX_data_req_t;

Parameters

The transmission request service primitive contains the following parameters:

mx primitive
Specifies the service primitive type. Always MX_DATA_REQ.

mx slot Where the PPA is associated with a multiplexed medium, this parameter specifies the
slots within the mutliplexed media upon which the user data is to be transmitted.
The form of the slot specification is provider- and media-specific. See also [Multiplex
Media], page 12.

Where the PPA specifies a single channel for a medium, this parameter is set to zero
(‘0’) by the MXS provider on MXS provider originated primitives and is ignored by
the MXS provider on MXS user originated primitives.

State

This primitive is only valid in the MXS_CONNECTED state.

New State

The state remains unchanged.

Response

Reasons for Failure

2014-10-25 53

Chapter 4: MXI Service Primitives

4.2.2.2 MX DATA IND

Description

This MXS provider originated primitive is issued by the MXS provider to indicate bits that were
received on the medium.

Format

The receive indication service primitive consists of one optional M_PROTO message block followed by
one or more M_DATA message blocks containing the received bits. The M_PROTO message block is
structured as follows:

typedef struct MX_data_ind {

mx_ulong mx_primitive;

mx_ulong mx_slot;

} MX_data_ind_t;

Parameters

The receive indication service primitive contains the following parameters:

mx primitive
Indicates the service primitive type. Always MX_DATA_IND.

mx slot Where the PPA corresponds to a multiplexed media, this parameter specifies to which
of the media streams the data indicated corresponds. The form of the slot specification
is provider- and media-specific. See also [Multiplex Media], page 12.

Where the PPA specifies a single channel for a medium, this parameter is set to zero
(‘0’) by the MXS provider on MXS provider originated primitives and is ignored by
the MXS provider on MXS user originated primitives.

State

This primitive is only issued by the MXS provider in the MXS_CONNECTED state.

New State

The state remains unchanged.

Response

Reasons for Failure

54 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.2.3 Disconnection Service Primitives

The disconnection service primitives permit the MXS user to disconnect the Stream from the line
(circuit or channel) for the transmit, receive, or both, directions. They also allow the MXS provider
to indicate that a disconnection has occured outside of MXS user control.

These service primitives implement the disconnection service (see Section 3.2.3 [Disconnection Ser-
vice], page 23).

4.2.3.1 MX DISCONNECT REQ

Description

This MXS user originated service primitive allows the MXS user to disconnect the MXS user Stream
from the bit-stream in the transmit, receive, or both, directions.

Format

The disconnect request primitive consists of one M_PROTO message block, structured as follows:

typedef struct MX_disconnect_req {

mx_ulong mx_primitive; /* always MX_DISCONNECT_REQ */

mx_ulong mx_conn_flags; /* direction to disconnect */

mx_ulong mx_slot; /* slot within multiplex */

} MX_disconnect_req_t;

Parameters

The disconnect request service primitive contains the following parameters:

mx primitive
Specifies the service primitive type. Always MX_DISCONNECT_REQ.

mx conn flags
Specifies the direction from which to disconnect. This field can be a bitwise OR of one
or more of the following flags:

MXF_RX_DIR Specifies that the MXS user Stream is to be disconnected from
the medium in the receive direction.

MXF_TX_DIR Specifies that the MXS user Stream is to be disconnected from
the medium in the transmit direction.

MXF_MONITOR Specifies that the MXS user Stream is to be discconnected
from the medium in monitoring (tap) mode.

mx slot Where the PPA is associated with a multiplexed medium, this parameter specifies
the slots within the mutliplexed media that have been autonomouosly disconnected.
The form of the slot specification is provider- and media-specific. See also [Multiplex
Media], page 12.

Where the PPA specifies a single channel for a medium, this parameter is set to zero
(‘0’) by the MXS provider on MXS provider originated primitives and is ignored by
the MXS provider on MXS user originated primitives.

State

This service primitive is only valid in the MXS_CONNECTED state.

2014-10-25 55

Chapter 4: MXI Service Primitives

New State

The state remains unchanged.

Response

The disconnect request service primitive requires that the MXS provider acknowledge receipt of the
primitive as follows:

− Successful: When successful, the MXS provider acknolwedges successful completion of the
connect service wtih a MX_OK_ACK primitive. The new state is MXS_WCON_DREQ. When the
MXS provider eventually completes the disconnection, it confirms the disconnect with a MX_

DISCONNECT_CON primitive and the new state is then MXS_ENABLED.

− Unsuccessful (non-fatal errors): When unsuccessful, the MXS provider acknowledges the failure
of the connect service with a MX_ERROR_ACK primitive containing the error. The new state
remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[MXSYSERR] UNIX system error.
[MXBADADDR] Bad address format or content.
[MXOUTSTATE] Interface out of state.
[MXBADOPT] Bad options format or content.
[MXBADPARM] Bad parameter format or content.
[MXBADPARMTYPE] Bad paramater structure type.
[MXBADFLAG] Bad flag.
[MXBADPRIM] Bad primitive.
[MXNOTSUPP] Primitive not supported.
[MXBADSLOT] Bad multplex slot.

56 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.2.3.2 MX DISCONNECT CON

Description

This MXS provider originated primitive is issued by the MXS provider to confirm the successful
completion of the disconnect service with the disconnection of the user Stream from the medium in
the transmit, receive, or both, directions.

Format

typedef struct MX_disconnect_con {

mx_ulong mx_primitive;

mx_ulong mx_conn_flags;

mx_ulong mx_slot;

} MX_disconnect_con_t;

Parameters

mx primitive
Indicates the service primitive type. Always MX_DISCONNECT_CON.

mx conn flags
Indicates the connect flags. This field is a bitwise OR of zero or more of the following
flags:

MXF_RX_DIR Confirms that the MXS user Stream was disconnected from
the medium in the receive direction.

MXF_TX_DIR Confirms that the MXS user Stream was disconnected from
the medium in the transmit direction.

MXF_MONITOR Confirms that the MXS user Stream was discconnected from
the medium in monitoring (tap) mode.

mx slot Where the PPA is associated with a multiplexed medium, this parameter indicates the
slots within the mutliplexed media that are confirmed as disconnected. The form of the
slot specification is provider- and media-specific. See also [Multiplex Media], page 12.

Where the PPA specifies a single channel for a medium, this parameter is set to zero
(‘0’) by the MXS provider on MXS provider originated primitives and is ignored by
the MXS provider on MXS user originated primitives.

State

This primitive will only be issued by the MXS provider in the MXS_WCON_DREQ state.

New State

The new state of the interface is the MXS_ENABLED state.

2014-10-25 57

Chapter 4: MXI Service Primitives

4.2.3.3 MX DISCONNECT IND

Description

This MXS provider originated primitive is issued by the MXS provider if an autonomous event
results in the disconnection of the transmit and receive bit-streams from the MXS user without an
explicit MXS user request.

Format

The disconnect indication primitive consists of one M_PROTO message block, structured as follows:

typedef struct MX_disconnect_ind {

mx_ulong mx_primitive; /* always MX_DISCONNECT_IND */

mx_ulong mx_conn_flags; /* direction disconnected */

mx_ulong mx_cause; /* cause for disconnection */

mx_ulong mx_slot; /* slot within multiplex */

} MX_disconnect_ind_t;

Parameters

mx primitive
Indicates the service primitive type. Always MX_DISCONNECT_IND.

mx conn flags
Indicates the connect flags. This field is a bitwise OR of zero or more of the following
flags:

MXF_RX_DIR Indicates that the MXS user Stream disconnected from the
medium in the receive direction.

MXF_TX_DIR Indicates that the MXS user Stream disconnected from the
medium in the transmit direction.

MXF_MONITOR Indicates that the MXS user Stream discconnected from the
medium in monitoring (tap) mode.

mx cause Indicates the cause of the autonomous disconnect.

mx slot Where the PPA is associated with a multiplexed medium, this parameter indicates the
slots within the mutliplexed media that have autonomously disconnected. The form
of the slot specification is provider- and media-specific. See also [Multiplex Media],
page 12.

Where the PPA specifies a single channel for a medium, this parameter is set to zero
(‘0’) by the MXS provider on MXS provider originated primitives and is ignored by
the MXS provider on MXS user originated primitives.

State

This primtiive will only be issued by the MXS provider in the MXS_CONNECTED state.

New State

The new state is MXS_ENABLED.

58 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Service Primitives

4.3 Diagnostics Requirements

Two error handling facilities should be provided to the MXS user: one to handle non-fatal errors,
and the other to handle fatal errors.

4.3.1 Non-Fatal Error Handling Facility

These are errors that do not change the state of the MXS interface as seen by the MXS user and pro-
vide the user with the option of reissuing the MX primitive with the corrected options specification.
The non-fatal error handling is provided only to those primitives that require acknowledgements,
and uses the MX_ERROR_ACK to report these errors. These errors retain the state of the MXS interface
the same as it was before the SDL provider received the primitive that was in error. Syntax errors
and rule violations are reported via the non-fatal error handling facility.

4.3.2 Fatal Error Handling Facility

These errors are issued by the MX provider when it detects errors that are not correctable by the
MX user, or if it is unable to report a correctible error to the MX user. Fatal errors are indicated
via the STREAMS message type M_ERROR with the UNIX system error [EPROTO]. The M_ERROR

STREAMS message type will result in the failure of all the UNIX system calls on the Stream. The
MXS user can recover from a fatal error by having all the processes close the files associated with
the Stream, and then reopening them for processing.

2014-10-25 59

Multiplex Interface (MXI) MXI Input-Output Controls

5 MXI Input-Output Controls

These input-output controls can be used to interrogate, negotiate, reset, collect and manage a given
channel or group of channels. When issued on a MXS user Stream, they can only be used to affect
the channel or channels associated with the MXS user Stream. Deattached Style 2 Streams have
no associated channels. When issued on a management Stream, they can be used to affect the
configuration of any channel or channels accessible to the management Stream (i.e. provided by the
same driver, or temporarily linked from the control Stream).

Channels can have characteristics at the channel level, as well as characteristics at the channel group
level. For example, the channel may not be looped back at the channel, but might be looped back
at the channel group (span). Where the channel represents a channel within a multiplexed medium
(such as a PCM TDM facility), the MXI input-output controls can be used to interrogate, negotiate
and otherwise manage the channel group characteristics providing that the MXS user has sufficient
privilege to do so.

Note that these input-output controls are not normally issued on the global management Stream by
user processes. Rather the Management Agent (SNMP Agent) for the driver is normally responsible
for managing channels within the driver using these input-output controls. Nomally these input-
output controls would only be issued by user processes to affect the channel or channels associated
with the attached MXS user Stream.

5.1 MXI Configuration

These input-output controls can be used to interrogate or negotiate the configuration of a given
channel or group of channels.

typedef struct mx_config {

mx_ulong type; /* unused */

mx_ulong encoding; /* encoding */

mx_ulong block_size; /* data block size (bits) */

mx_ulong samples; /* samples per block */

mx_ulong sample_size; /* sample size (bits) */

mx_ulong rate; /* clock rate (samples/second) */

mx_ulong tx_channels; /* number of tx channels */

mx_ulong rx_channels; /* number of rx channels */

mx_ulong opt_flags; /* options flags */

} mx_config_t;

The multiplex configuration structure, mx_config_t, contains the following members:

type This member is only to maintain alignment with the equivalient parameter structure
as defined in the MXI and unused in the input-output control.

encoding Indicates or specifies the encoding associated with the multiplex. When the multiplex is
used for any form of data, MX_ENCODING_NONE will be indicated and should be specified.
encoding can be one of the following values:

MX_ENCODING_NONE No encoding. Used for data or other clear chan-
nel information.

MX_ENCODING_CN CN.
MX_ENCODING_DVI4 DVI4.
MX_ENCODING_FS1015 FIPS FS 1015 LPC.
MX_ENCODING_FS1016 FIPS FS 1016 LPC.
MX_ENCODING_G711_PCM_A G.711 PCM A-law.

2014-10-25 61

Chapter 5: MXI Input-Output Controls

MX_ENCODING_G711_PCM_L G.711 PCM Linear.
MX_ENCODING_G711_PCM_U G.711 PCM Mu-law.
MX_ENCODING_G721 G.721.
MX_ENCODING_G722 G.722.
MX_ENCODING_G723 G.723.
MX_ENCODING_G726 G.726.
MX_ENCODING_G728 G.728.
MX_ENCODING_G729 G.729.
MX_ENCODING_GSM GSM.
MX_ENCODING_GSM_EFR GSM Extended Full-Rate.
MX_ENCODING_GSM_HR GSM Half-Rate.
MX_ENCODING_LPC LPC.
MX_ENCODING_MPA MPA.
MX_ENCODING_QCELP QCELP.
MX_ENCODING_RED RED.
MX_ENCODING_S16_BE Signed 16-bit Big-Endian.
MX_ENCODING_S16_LE Signed 16-bit Little-Endian.
MX_ENCODING_S8 Sign 8-bit.
MX_ENCODING_U16_BE Unsigned 16-bit Big-Endian.
MX_ENCODING_U16_LE Unsigned 16-bit Little-Endian.
MX_ENCODING_U8 Unsigned 8-bit.
MX_ENCODING_VDVI DVI.

block size Specifies or indicates the block size associated with the multiplex. The block size is
the number of samples that are written or read at one time. If this value is less than
the size of a STREAMS fast buffer, FASTBUF, then a FASTBUF of samples will be read
or written at once.

samples Specifies or indicates the number of samples (from the same timeslot) in a block.

sample size
Specifies or indicates the sample size in bits. This can normally be 3, 4, 5, 7, 8, 12, 14
or 16.

rate Specifies or indicates the rate of the multiplex. This is the rate in samples per second.
rate can be one of the following values:

MX_RATE_VARIABLE The rate is variable.
MX_RATE_8000 56kbps or 64kbps.
MX_RATE_11025 11kHz Audio.
MX_RATE_16000 16kHz Audio.
MX_RATE_22050 22kHz Audio.
MX_RATE_44100 44kHz Audio.
MX_RATE_90000 90kHz Audio.
MX_RATE_184000 23B.
MX_RATE_192000 T1 (24B).
MX_RATE_240000 30B.
MX_RATE_248000 E1 (31B).

tx channels
Specifies or indicates the number of transmit channels available. For the MX interface,
this value is either 0 or 1.

62 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Input-Output Controls

rx channels
Specifies or indicates the number of receive channels available. For the MX interface,
this value is either 0, 1, or 2. (The value of 2 is used for monitoring mode where two
receive channels exists and zero transmit channels.)

opt flags Specifies or indicates the options associated with the MX provider. MX provider op-
tions are provider specific and no generic options have yet been defined.

5.1.1 MXI Get Configuration

MX_IOCGCONFIG

Gets the multiplex configuration. Upon success, the multiplex configuration is written to the memory
extent indicated by the pointer argument to the ioctl(2s) call.

5.1.2 MXI Set Configuration

MX_IOCSCONFIG

Set the multiplex configuration. Upon success, the multiplex configuration is read from the memory
extent specified by the pointer argument to the ioctl(2s) call.

5.1.3 MXI Test Configuration

MX_IOCTCONFIG

Test the multiplex configuration. Upon success, the multiplex configuration is read from the memory
extent specified by the pointer argument to the ioctl(2s) call, values adjusted according to the
rules for configuration, and the resulting configuraiton written back to the memory extent specified
by the pointer argumnet to the ioctl(2s) call. Actual configuration is not changed.

5.1.4 MXI Commit Configuration

MX_IOCCCONFIG

Confirms the multiplex configuration. Upon success, the multiplex configuration is read from the
memory extent specified by the pointer argument to the ioctl(2s) call, values adjusted according
to the rules for configuration, the configuration applied, and then the resulting configuration written
back to the memory extent specified by the pointer argument to the ioctl(2s) call.

Normally, the argument to the MX_IOCCCONFIG call is the same as to an immediately preceding
MX_IOCTCONFIG call.

5.2 MXI Options

These input-output controls can used to interrogate or negotiate the options associated with a given
channel or group of channels.

5.3 MXI State

These input-output controls can be used to interrotate or reset the state associated with a channel
or a group of channels.

State input-output controls all take an argument containing a poitner to a mx_statem_t structure,
formatted as follows:

2014-10-25 63

http://www.openss7.org/man2html?ioctl(2s)
http://www.openss7.org/man2html?ioctl(2s)
http://www.openss7.org/man2html?ioctl(2s)
http://www.openss7.org/man2html?ioctl(2s)
http://www.openss7.org/man2html?ioctl(2s)
http://www.openss7.org/man2html?ioctl(2s)

Chapter 5: MXI Input-Output Controls

typedef struct mx_statem {

mx_ulong index;

mx_ulong type;

mx_ulong rate;

mx_ulong mode;

mx_ulong admin_state;

mx_ulong usage_state;

mx_ulong avail_status;

mx_ulong ctrl_status;

} mx_statem_t;

The multiplex state structure, mx_statem_t, contains the following members:

index Provides time slot index for the channel. For T1 and J1 spans, the time slots ‘1’
through ‘24’ index the corresponding time slot in the span. For E1 spans, the time
slot indices ‘1’ throught ‘31’ index the corresponding time slot in the span. For E1
operation, TS0 is unusable. For E1 CAS operation (where any channel in the span is
configured for CAS), TS16 is not available to users for payload. For V.35 and other
discrete synchronous channels, this index is ‘1’.

type Specifies or indicates whether the channel (or channels) has channel associated sig-
nalling or common channel signalling. This field can have one of the following values:

MX_TYPE_NONE

For non-trunk channels, no type is necessary.

MX_TYPE_CAS

For T1 and J1 span, channel associated signalling implies 56kbps DS0A
operation for data within the channel.

MX_TYPE_CCS

For E1, T1 or J1 spans, common channel signalling implies 64kbps DS0
oepration within the channel is indicated. For E1, CCS operation for
the entire span implies that channel 17 (timeslot 16) is used for common
channel signalling or is also available for payload. This is why it is typical
on non-CAS E1 spans to place the signalling channel in timeslot 16 (e.g.
the D-channel of a primary rate interface).

rate Specifies or indicates the bit rate of the channel in a single-rate channel, or of each
channel in a multi-rate channel, or of each channel in a full-rate channel. Channels ‘1’
through ‘24’ for T1 and J1 can be 56kbps or 64kbps. Channels ‘1’ through ‘31’ for E1
are 64kbps but can be forced into 56kbps mode. The default is 64kbps for E1 CCS and
CAS channels and T1 CCS channels; 56kbps for T1 CAS channels.

mode Specifies or indicates the channel mode. This is bitwise OR of zero or more of the
following values:

MX_MODE_REMLOOP

The receive data in the channel is looped back to replace the transmit
data for the channel. This may either be accomplished within the host or
using the per-channel loopback capability of some chip sets.

MX_MODE_LOCLOOP

The transmit data for the channel is looped back to replace the receive
data for the channel. This may be accomplished within the host.

64 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Input-Output Controls

MX_MODE_TEST

The channel is marked for BERT testing. When BERT testing for the
span is enabled on a channel basis, this channel will be included in the
channels upon which the BERT test pattern is transmitted.

Because tests are disruptive, no value can be added to this set unless the channel has
a control status of “subject to test” or “reserved for test”.

admin state
Specifies or indicates the administrative state of the channel. The administrative state
can be one of the following values:

MX_ADMIN_LOCKED

The administrative state is “locked”. The channel is administratively
prohibited from providing service to users.

MX_ADMIN_UNLOCKED

The administrative state is “unlocked”. The channel is administratively
permitted to provide service to users.

MX_ADMIN_SHUTDOWN

The administrative state is “shutting down”. The channel will continue
to provide service to existing users but will reject new users: once there
are no more users of the channel, the channel will move to the “locked”
state.

usage state Specifies or indicates the usage state of the channel. The usage state can be one of the
following values:

MX_USAGE_IDLE

The channel is “idle”. The channel is not currently in use.

MX_USAGE_ACTIVE

The channel is “active”. The channel is in use and has sufficient op-
erating capacity to provide for additional users simultaneously (e.g. a
half-channel is used).

MX_USAGE_BUSY

The channel is “busy”. The channel is in use and has no spare capacity
(i.e. the full channs is in use).

If partial channels are not supported, only the values “idle” and “busy” are allowed.

avail status
Specifies or indicates the availabiltiy status of the channel. The availablity status is a
bitwise OR of zero or more of the following values:

MX_AVAIL_INTEST

The channel is “in test”. The channel is undergoing a test procedure. The
administrative state is “locked” and the operational state is “disabled”.
This condition exists while the span is in test in a manner disruptive to
the channel, or when the channel is in loopback or test modes.

MX_AVAIL_FAILED

The channel has “failed”. The channel has an internal fault that prevents
it from operating. The operational state is “disabled”. This value is
present when the same value is present in the span availability status.

2014-10-25 65

Chapter 5: MXI Input-Output Controls

MX_AVAIL_POWEROFF

The channel has “power off”. The channl requires power to be applied and
is not powered on. For example, power management may have removed
power from the device. This value is present when the same value is
present in the span availablity status.

MX_AVAIL_OFFLINE

The channel is “off line”. The channel requires a outing operation to
be performed to place it online and make it available for use. The op-
eration may be manul or automatic, or both. The operational state is
“disabled”. This value is present when the same value is present in the
span availability status.

MX_AVAIL_OFFDUTY

The channel is “off duty”. The channel has been made inactive by an
internal control process in accordance with a predetermined time sched-
ule. Under normal conditions, the control process can be expected to
reactivate the channel at some scheduled time.

MX_AVAIL_DEPEND

The channel has a “dependency”. The channel cannot operate because
some other resource on which it depends is unavailable (e.g. the span).

MX_AVAIL_DEGRADED

The channel is “degraded”. The channel is operating with degraded pe-
formance. This value is present when the same value is present in the
span availability status.

MX_AVAIL_MISSING

The channel is “not installed”. The channel is not present in the system
or is incomplete.

MX_AVAIL_LOGFULL

Not used.

ctrl status Specifies or indicates the control status of the channel. The control status is a bitwise
OR of zero or more of the following values:

MX_CTRL_CANTEST

The channel is “subject to test”. The channel is available to normal users
but tests may be conducted on it simultaneously at unpredicatable times,
which may cause it to exhibit unusual characteristics to users.

MX_CTRL_PARTLOCK

The channel is “part of services locked”. A manager has adminstratively
locked some part of the channel.

MX_CTRL_RESERVED

The channel is “reserved for test”. The channel is undergoing a test
procedure and is unavailable to users.

MX_CTRL_SUSPENDED

The channel is “suspended”. The channel service has been administra-
tively suspended to users.

66 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Input-Output Controls

5.3.1 MXI Get State

MX_IOCGSTATEM

Requests that the state information be obtained and written to the mx_statem_t structure pointed
to by the argument to the input-output control.

5.3.2 MXI Reset State

MX_IOCCMRESET

Request that the state associated with the multiplex be reset. This input-output control takes no
argument.

5.4 MXI Statistics

These input-output controls can be used to collect statistics or set staticstics collection intervals
associated with a channel or group of channels.

Statistics input-output controls all take an argument containing a pointer to a mx_stats_t structure,
formatted as follows:

typedef struct mx_stats {

mx_ulong header;

mx_ulong rx_octets;

mx_ulong tx_octets;

mx_ulong rx_overruns;

mx_ulong tx_underruns;

mx_ulong rx_buffer_overflows;

mx_ulong tx_buffer_overflows;

mx_ulong lead_cts_lost;

mx_ulong lead_dcd_lost;

mx_ulong carrier_lost;

mx_ulong errored_seconds;

mx_ulong severely_errored_seconds;

mx_ulong severely_errored_framing_seconds;

mx_ulong unavailable_seconds;

mx_ulong controlled_slip_seconds;

mx_ulong path_coding_violations;

mx_ulong line_errored_seconds;

mx_ulong bursty_errored_seconds;

mx_ulong degraded_minutes;

mx_ulong line_coding_violations;

} mx_stats_t;

The multiplex statistics structure, mx_stats_t, contains the following members:

header Specifies or indicates the statistics period header associated with the multiplex. This
header is a statistics collection period in milliseconds.

rx octets Indicates the number of octets received during the collection interval. This does not
include octets for which there was a receiver overrun condition.

tx octets Indicates the number of octets transmitted during the collection interval. This does
not include octets for which there was a transmitter underrun condition.

2014-10-25 67

Chapter 5: MXI Input-Output Controls

rx overruns
Indicates the number of receive overrun conditions that occurred during the collec-
tion interval. When the overrun condition spans interval boundaries, the condition is
counted in the interval during which the overrun condition began.

tx underruns
Indicates the number of transmitter underrun conditions that occurred during the col-
lection interval. When the underrun condition spans interval boundaries, the condition
is counted in the interval during which the underrun condition began.

rx buffer overflows
Indicates the number of receive buffer overflows that occured during the collection
interval. Receive buffer overflow conditions occur when the driver is unable to allocate
a message block or buffer for received bits, resulting in the discard of the received bits.

tx buffer overflows
Indicates the number of transmit buffer overflows that occured during the collection
interval. Transmit buffer overflow conditions occur when the driver is unable to allocate
a message block or buffer for transmit bits, resulting in the discard of the bits to be
transmitted.

lead cts lost
Indicates the number of Clear To Send leads lost. That is, the number of times that
the Clear To Send lead transitioned from asserted to deasserted.

lead dcd lost
Indicates the number of Data Carrier Detect leads lost. That is, the number of times
that the Data Carrier Detect lead trasitioned from asserted to deasserted.

carrier lost Indicates the number of Carrier lost conditions. That is, the number of times that an
alarm or lead indicated that the facility carrier was lost.

errored seconds
The number of errored seconds (ESs) in the current interval. An errored second has one
or more path code violations, one or more out of frame defects, one or more controlled
slip events, or a detected alarm indication signal (AIS) defect.

severely errored seconds
The number of severely errored seconds (SESs) in the current interval.

severely errored framing seconds
The number of severely errored framing seconds (SEFSs) in the current interval. A
severely errored framing second has one or more out of frame defects or a detected AIS
defect.

unavailable seconds
The number of unavailable seconds in the current interval.

controlled slip seconds
The number of controlled slip seconds (CSSs) in the current interval. A controlled slip
second has one or more controlled slip events.

path coding violations
The number of path coding violations (PCVs) in the current interval. A path coding
violation is a fram synchronization bit error in the D4 and E1 no-CRC4 formats, or a
CRC or frame synchronization bit error in the ESF and E1 CRC4 formats.

68 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Input-Output Controls

line errored seconds
The number of line errored seconds (LESs) in the current interval. A line errored
second is a second in which one or more line code violation error events are detected.

bursty errored seconds
The number of bursty errroed seconds (BESs) in the current interval. A bursty errored
second has 2 to 319 path coding violation error events, no severely errored frame defects,
and no detected inocming AIS defects.

degraded minutes
The number of degraded minutes (DMs) in the current interval.

line coding violations
The number of line coding violations (LCVs) in the current interval. An LCV is the
occurence of a bipolar violation (BPV) or excessive zeroes (EXZ) error event.

5.5 MXI Events

These input-output controls can be used to specify the events that will be reported by a channel or
channels.

Notification input-output controls all take an argument containing a pointer to a mx_notify_t

structure, formatted as follows:

typedef struct mx_notify {

mx_ulong events;

} mx_notify_t;

The multiplex events structure, mx_notify_t, contains the following members:

events Specifies or indicates a bitwise OR of the events associated wtih the multiplex. When
a bit is set, it specifies that event reporting for the specific event is enabled for the
multiplex; when clear, that the event reporting is disabled.

5.5.1 MXI Get Notify

MX_IOCGNOTIFY

Requests that the events associated with the multiplex be obtained and written to the mx_notify_t
structure pointed to by the argument to the input-output control.

5.5.2 MXI Set Notify

MX_IOCSNOTIFY

Requests that the events associated with the multiplex be read from the mx_notify_t structure
pointed to by the argument to the input-output control and set for the multiplex. Each bit set in
the events member specifies an event for which notification is to be set.

5.5.3 MXI Clear Notify

MX_IOCCNOTIFY

Request that the events associated with the multiplex be read from the mx_notify_t structure
pointed to by the argument to the input-output control and cleared for the multiplex. Each bit set
in the events member specifies an event for which notification is to be cleared.

2014-10-25 69

Chapter 5: MXI Input-Output Controls

5.6 MXI Commands

These input-output controls can be used to manage a channel or channels.

Management input-output controls all take an argument containing a pointer to a mx_mgmt_t struc-
ture, formatted as follows:

typedef struct mx_mgmt {

mx_ulong cmd;

} mx_mgmt_t;

The multiplex management structure, mx_mgmt_t, contains the following members:

cmd Specifies the management command to be performed by the MXS provider. This
member can have one of the following values:

MX_CMD_REMLOOP

Place the multiplex in remote loopback. The administrative state of the
multiplex must be “locked” for this command to be successfull. Once
complete, the control status of the multiplex will contain “reserved for
test” and the availability status of the multiplex will contain “in test”.

MX_CMD_LOCLOOP

Place the multiplex in local loopback. The administrative state of the
multiplex must be “locked” for this command to be successfull. Once
complete, the control status of the multiplex will contain “reserved for
test” and the availabiltiy status of the multiplex will contain “in test”.

MX_CMD_FORTEST

Reserve the multiplex for BERT testing. The administrative state of the
multiplex must be “locked” for this command to be successful. Once
complete, the control status of the multiplex will contain “reserved for
test” and the availability status of the multiplex will contain “in test”
while BERT testing is actively being performed.

MX_CMD_LOCK

Place the multiplex in the “locked” administrative state. If the multiplex
is in the “unlocked” or “shutting down” states and the usage state is
“busy”, this will result in the removal from service of the multiplex while
it is in use.

MX_CMD_UNLOCK

Place the multiplex in the “unlocked” administrative state. This makes
the multiplex adminstratively available for use.

MX_CMD_SHUTDOWN

Place the multiplex in the “shutting down” administrative state. If the
multiplex has a usage state of “idle” the multiplex will be placed immedi-
ately into the “locked” administrative state. If the usage state is “busy”,
then the administrative state will be set to “shutting down” and the driver
will wait until the multiplex is released before it is placed in the “locked”
administrative state.

5.6.1 MXI Command

70 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Input-Output Controls

MX_IOCCMGMT

Request that the management command be read from the mx_mgmt_t structure pointed to by the
argument to the input-output control and acted upon for the multiplex.

2014-10-25 71

Multiplex Interface (MXI) MXI Management

6 MXI Management

2014-10-25 73

Multiplex Interface (MXI) MXI Header Files

Appendix A MXI Header Files

A.1 MXI Header File Listing

#ifndef __SS7_MXI_H__

#define __SS7_MXI_H__

typedef int32_t mx_long;

typedef uint32_t mx_ulong;

typedef uint16_t mx_ushort;

typedef uint8_t mx_uchar;

#define MX_INFO_REQ 1U

#define MX_OPTMGMT_REQ 2U

#define MX_ATTACH_REQ 3U

#define MX_ENABLE_REQ 4U

#define MX_CONNECT_REQ 5U

#define MX_DATA_REQ 6U

#define MX_DISCONNECT_REQ 7U

#define MX_DISABLE_REQ 8U

#define MX_DETACH_REQ 9U

#define MX_INFO_ACK 10U

#define MX_OPTMGMT_ACK 11U

#define MX_OK_ACK 12U

#define MX_ERROR_ACK 13U

#define MX_ENABLE_CON 14U

#define MX_CONNECT_CON 15U

#define MX_DATA_IND 16U

#define MX_DISCONNECT_IND 17U

#define MX_DISCONNECT_CON 18U

#define MX_DISABLE_IND 19U

#define MX_DISABLE_CON 20U

#define MX_EVENT_IND 21U

/*

* MX STATES

*/

#define MXS_UNINIT -2U

#define MXS_UNUSABLE -1U

#define MXS_DETACHED 0U

#define MXS_WACK_AREQ 1U

#define MXS_WACK_UREQ 2U

#define MXS_ATTACHED 3U

#define MXS_WACK_EREQ 4U

#define MXS_WCON_EREQ 5U

#define MXS_WACK_RREQ 6U

#define MXS_WCON_RREQ 7U

#define MXS_ENABLED 8U

#define MXS_WACK_CREQ 9U

#define MXS_WCON_CREQ 10U

#define MXS_WACK_DREQ 11U

#define MXS_WCON_DREQ 12U

#define MXS_CONNECTED 13U

2014-10-25 75

Appendix A: MXI Header Files

/*

* MX STATE FLAGS

*/

#define MXSF_UNINIT (1<<(2+MXS_UNINIT))

#define MXSF_UNUSABLE (1<<(2+MXS_UNUSABLE))

#define MXSF_DETACHED (1<<(2+MXS_DETACHED))

#define MXSF_WACK_AREQ (1<<(2+MXS_WACK_AREQ))

#define MXSF_WACK_UREQ (1<<(2+MXS_WACK_UREQ))

#define MXSF_ATTACHED (1<<(2+MXS_ATTACHED))

#define MXSF_WACK_EREQ (1<<(2+MXS_WACK_EREQ))

#define MXSF_WCON_EREQ (1<<(2+MXS_WCON_EREQ))

#define MXSF_WACK_RREQ (1<<(2+MXS_WACK_RREQ))

#define MXSF_WCON_RREQ (1<<(2+MXS_WCON_RREQ))

#define MXSF_ENABLED (1<<(2+MXS_ENABLED))

#define MXSF_WACK_CREQ (1<<(2+MXS_WACK_CREQ)

#define MXSF_WCON_CREQ (1<<(2+MXS_WCON_CREQ))

#define MXSF_WACK_DREQ (1<<(2+MXS_WACK_DREQ))

#define MXSF_WCON_DREQ (1<<(2+MXS_WCON_DREQ))

#define MXSF_CONNECTED (1<<(2+MXS_CONNECTED))

/*

* MX PROTOCOL PRIMITIVES

*/

/*

* MX_INFO_REQ

* ---

*/

typedef struct MX_info_req {

mx_ulong mx_primitive; /* always MX_INFO_REQ */

} MX_info_req_t;

/*

* MX_INFO_ACK

* ---

* Indicates to the multiplex user requested information concerning the

* multiplex provider and the attached multiplex (if any).

*/

typedef struct MX_info_ack {

mx_ulong mx_primitive; /* always MX_INFO_ACK */

mx_ulong mx_addr_length; /* multiplex address length */

mx_ulong mx_addr_offset; /* multiplex address offset */

mx_ulong mx_parm_length; /* multiplex paramters length */

mx_ulong mx_parm_offset; /* multiplex paramters offset */

mx_ulong mx_prov_flags; /* provider options flags */

mx_ulong mx_prov_class; /* provider class */

mx_ulong mx_style; /* provider style */

mx_ulong mx_version; /* multiplex interface version */

mx_ulong mx_state; /* multiplex state */

} MX_info_ack_t;

#define MX_CIRCUIT 0x01 /* circuit provider class */

#define MX_STYLE1 0x0 /* does not perform attach */

#define MX_STYLE2 0x1 /* does perform attach */

76 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Header Files

#define MX_VERSION_1_0 0x10 /* version 1.0 of interface */

#define MX_VERSION_1_1 0x11 /* version 1.1 of interface */

#define MX_VERSION MX_VERSION_1_1

#define MX_PARMS_CIRCUIT 0x01 /* parms structure type */

typedef struct MX_parms_circuit {

mx_ulong mp_type; /* always MX_PARMS_CIRCUIT */

mx_ulong mp_encoding; /* encoding */

mx_ulong mp_block_size; /* data block size (bits) */

mx_ulong mp_samples; /* samples per block */

mx_ulong mp_sample_size; /* sample size (bits) */

mx_ulong mp_rate; /* channel clock rate (samples/second) */

mx_ulong mp_tx_channels; /* number of tx channels */

mx_ulong mp_rx_channels; /* number of rx channels */

mx_ulong mp_opt_flags; /* options flags */

} MX_parms_circuit_t;

#define MX_PARMS_CHANMAP 0x02 /* parms structure type */

typedef struct MX_parms_chanmap {

mx_ulong mp_type; /* always MX_PARM_CHANMAP */

mx_ulong mp_spans; /* number of spans */

mx_ulong mp_span_offset; /* offset of first span */

mx_long mp_span_increment; /* increment of next span from previous span */

mx_ulong mp_slot_offset; /* offset from beginning of span */

mx_long mp_slot_increment; /* increment of next slot from previous slot */

mx_ulong mp_chan_map; /* channel (bit) map (lsb = slot 0, msb = slot

31) */

} MX_parms_chanmap_t;

union MX_parms {

mx_ulong mp_type; /* structure type */

MX_parms_circuit_t circuit; /* circuit structure */

MX_parms_chanmap_t chanmap; /* chanmap structure */

};

#define MX_PARM_OPT_CLRCH 0x01 /* supports clear channel */

#define MX_ENCODING_NONE 0

#define MX_ENCODING_CN 1

#define MX_ENCODING_DVI4 2

#define MX_ENCODING_FS1015 3

#define MX_ENCODING_FS1016 4

#define MX_ENCODING_G711_PCM_A 5

#define MX_ENCODING_G711_PCM_L 6

#define MX_ENCODING_G711_PCM_U 7

#define MX_ENCODING_G721 8

#define MX_ENCODING_G722 9

#define MX_ENCODING_G723 10

#define MX_ENCODING_G726 11

#define MX_ENCODING_G728 12

#define MX_ENCODING_G729 13

#define MX_ENCODING_GSM 14

#define MX_ENCODING_GSM_EFR 15

#define MX_ENCODING_GSM_HR 16

#define MX_ENCODING_LPC 17

2014-10-25 77

Appendix A: MXI Header Files

#define MX_ENCODING_MPA 18

#define MX_ENCODING_QCELP 19

#define MX_ENCODING_RED 20

#define MX_ENCODING_S16_BE 21

#define MX_ENCODING_S16_LE 22

#define MX_ENCODING_S8 23

#define MX_ENCODING_U16_BE 24

#define MX_ENCODING_U16_LE 25

#define MX_ENCODING_U8 26

#define MX_ENCODING_VDVI 27

#define MX_RATE_VARIABLE 0

#define MX_RATE_8000 8000

#define MX_RATE_11025 11025

#define MX_RATE_16000 16000

#define MX_RATE_22050 22050

#define MX_RATE_44100 44100

#define MX_RATE_90000 90000

#define MX_RATE_184000 184000 /* 23B */

#define MX_RATE_192000 192000 /* T1 */

#define MX_RATE_240000 240000 /* 30B */

#define MX_RATE_248000 248000 /* E1 */

#define MX_RATE_5376000 5376000 /* T3 */

/*

* MX_OPTMGMT_REQ

* ---

*/

typedef struct MX_optmgmt_req {

mx_ulong mx_primitive; /* always MX_OPTMGMT_REQ */

mx_ulong mx_opt_length; /* length of options */

mx_ulong mx_opt_offset; /* offset of options */

mx_ulong mx_mgmt_flags; /* option flags */

} MX_optmgmt_req_t;

/*

* MX_OPTMGMT_ACK

* ---

*/

typedef struct MX_optmgmt_ack {

mx_ulong mx_primitive; /* always MX_OPTMGMT_REQ */

mx_ulong mx_opt_length; /* length of options */

mx_ulong mx_opt_offset; /* offset of options */

mx_ulong mx_mgmt_flags; /* option flags */

} MX_optmgmt_ack_t;

/*

management flags for MX_OPTMGMT

*/

#define MX_SET_OPT 0x01

#define MX_GET_OPT 0x02

#define MX_NEGOTIATE 0x03

#define MX_DEFAULT 0x04

/*

* MX_ATTACH_REQ

78 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Header Files

* ---

*/

typedef struct MX_attach_req {

mx_ulong mx_primitive; /* always MX_ATTACH_REQ */

mx_ulong mx_addr_length; /* length of multiplex address */

mx_ulong mx_addr_offset; /* offset of multiplex address */

mx_ulong mx_flags; /* options flags */

} MX_attach_req_t;

/*

* MX_DETACH_REQ

* ---

*/

typedef struct MX_detach_req {

mx_ulong mx_primitive; /* always MX_DETACH_REQ */

} MX_detach_req_t;

/*

* MX_OK_ACK

* ---

*/

typedef struct MX_ok_ack {

mx_ulong mx_primitive; /* always MX_OK_ACK */

mx_ulong mx_correct_prim; /* correct primitive */

mx_ulong mx_state; /* resulting state */

} MX_ok_ack_t;

/*

* MX_ERROR_ACK

* ---

*/

typedef struct MX_error_ack {

mx_ulong mx_primitive; /* always MX_ERROR_ACK */

mx_ulong mx_error_primitive; /* primitive in error */

mx_ulong mx_error_type; /* MXI error */

mx_ulong mx_unix_error; /* UNIX error */

mx_ulong mx_state; /* resulting state */

} MX_error_ack_t;

/*

error types

*/

#define MXSYSERR 0 /* UNIX system error */

#define MXBADADDR 1 /* Bad address format or content */

#define MXOUTSTATE 2 /* Interface out of state */

#define MXBADOPT 3 /* Bad options format or content */

#define MXBADPARM 4 /* Bad parameter format or content */

#define MXBADPARMTYPE 5 /* Bad paramater structure type */

#define MXBADFLAG 6 /* Bad flag */

#define MXBADPRIM 7 /* Bad primitive */

#define MXNOTSUPP 8 /* Primitive not supported */

#define MXBADSLOT 9 /* Bad multplex slot */

/*

* MX_ENABLE_REQ

* ---

2014-10-25 79

Appendix A: MXI Header Files

*/

typedef struct MX_enable_req {

mx_ulong mx_primitive; /* always MX_ENABLE_REQ */

} MX_enable_req_t;

/*

* MX_ENABLE_CON

* ---

*/

typedef struct MX_enable_con {

mx_ulong mx_primitive; /* always MX_ENABLE_CON */

} MX_enable_con_t;

/*

* MX_DISABLE_REQ

* ---

*/

typedef struct MX_disable_req {

mx_ulong mx_primitive; /* always MX_DISABLE_REQ */

} MX_disable_req_t;

/*

* MX_DISABLE_IND

* ---

*/

typedef struct MX_disable_ind {

mx_ulong mx_primitive; /* always MX_DISABLE_IND */

mx_ulong mx_cause; /* cause for disable */

} MX_disable_ind_t;

/*

* MX_DISABLE_CON

* ---

*/

typedef struct MX_disable_con {

mx_ulong mx_primitive; /* always MX_DISABLE_CON */

} MX_disable_con_t;

/*

* MX_DATA_REQ

* ---

*/

typedef struct MX_data_req {

mx_ulong mx_primitive; /* always MX_DATA_REQ */

mx_ulong mx_slot; /* slot within multiplex */

} MX_data_req_t;

/*

* MX_DATA_IND

* ---

*/

typedef struct MX_data_ind {

mx_ulong mx_primitive; /* always MX_DATA_IND */

mx_ulong mx_slot; /* slot within multiplex */

} MX_data_ind_t;

80 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Header Files

/*

* MX_CONNECT_REQ

* ---

*/

typedef struct MX_connect_req {

mx_ulong mx_primitive; /* always MX_CONNECT_REQ */

mx_ulong mx_conn_flags; /* direction to connect */

mx_ulong mx_slot; /* slot within multiplex */

} MX_connect_req_t;

/*

connect flags

*/

#define MXF_RX_DIR 0x01

#define MXF_TX_DIR 0x02

#define MXF_BOTH_DIR (MXF_RX_DIR|MXF_TX_DIR)

/*

* MX_CONNECT_CON

* ---

*/

typedef struct MX_connect_con {

mx_ulong mx_primitive; /* always MX_CONNECT_CON */

mx_ulong mx_conn_flags; /* direction connected */

mx_ulong mx_slot; /* slot within multiplex */

} MX_connect_con_t;

/*

* MX_DISCONNECT_REQ

* ---

*/

typedef struct MX_disconnect_req {

mx_ulong mx_primitive; /* always MX_DISCONNECT_REQ */

mx_ulong mx_conn_flags; /* direction to disconnect */

mx_ulong mx_slot; /* slot within multiplex */

} MX_disconnect_req_t;

/*

* MX_DISCONNECT_IND

* ---

*/

typedef struct MX_disconnect_ind {

mx_ulong mx_primitive; /* always MX_DISCONNECT_IND */

mx_ulong mx_conn_flags; /* direction disconnected */

mx_ulong mx_cause; /* cause for disconnection */

mx_ulong mx_slot; /* slot within multiplex */

} MX_disconnect_ind_t;

/*

* MX_DISCONNECT_CON

* ---

*/

typedef struct MX_disconnect_con {

mx_ulong mx_primitive; /* always MX_DISCONNECT_CON */

mx_ulong mx_conn_flags; /* direction disconnected */

mx_ulong mx_slot; /* slot within multiplex */

2014-10-25 81

Appendix A: MXI Header Files

} MX_disconnect_con_t;

/*

* MX_EVENT_IND

* ---

*/

typedef struct MX_event_ind {

mx_ulong mx_primitive; /* always MX_EVENT_IND */

mx_ulong mx_event; /* event */

mx_ulong mx_slot; /* slot within multiplex for event */

} MX_event_ind_t;

#define MX_EVT_DCD_ASSERT 0

#define MX_EVT_DCD_DEASSERT 1

#define MX_EVT_DSR_ASSERT 2

#define MX_EVT_DSR_DEASSERT 3

#define MX_EVT_DTR_ASSERT 4

#define MX_EVT_DTR_DEASSERT 5

#define MX_EVT_RTS_ASSERT 6

#define MX_EVT_RTS_DEASSERT 7

#define MX_EVT_CTS_ASSERT 8

#define MX_EVT_CTS_DEASSERT 9

#define MX_EVT_RI_ASSERT 10

#define MX_EVT_RI_DEASSERT 11

#define MX_EVT_YEL_ALARM 12

#define MX_EVT_BLU_ALARM 13

#define MX_EVT_RED_ALARM 14

#define MX_EVT_NO_ALARM 15

#define MXF_EVT_DCD_ASSERT (1 << 0)

#define MXF_EVT_DCD_DEASSERT (1 << 1)

#define MXF_EVT_DSR_ASSERT (1 << 2)

#define MXF_EVT_DSR_DEASSERT (1 << 3)

#define MXF_EVT_DTR_ASSERT (1 << 4)

#define MXF_EVT_DTR_DEASSERT (1 << 5)

#define MXF_EVT_RTS_ASSERT (1 << 6)

#define MXF_EVT_RTS_DEASSERT (1 << 7)

#define MXF_EVT_CTS_ASSERT (1 << 8)

#define MXF_EVT_CTS_DEASSERT (1 << 9)

#define MXF_EVT_RI_ASSERT (1 << 10)

#define MXF_EVT_RI_DEASSERT (1 << 11)

#define MXF_EVT_YEL_ALARM (1 << 12)

#define MXF_EVT_BLU_ALARM (1 << 13)

#define MXF_EVT_RED_ALARM (1 << 14)

#define MXF_EVT_NO_ALARM (1 << 15)

#define MXF_EVT_DCD_CHANGE (MXF_EVT_DCD_ASSERT|MXF_EVT_DCD_DEASSERT)

#define MXF_EVT_DSR_CHANGE (MXF_EVT_DSR_ASSERT|MXF_EVT_DSR_DEASSERT)

#define MXF_EVT_DTR_CHANGE (MXF_EVT_DTR_ASSERT|MXF_EVT_DTR_DEASSERT)

#define MXF_EVT_RTS_CHANGE (MXF_EVT_RTS_ASSERT|MXF_EVT_RTS_DEASSERT)

#define MXF_EVT_CTS_CHANGE (MXF_EVT_CTS_ASSERT|MXF_EVT_CTS_DEASSERT)

#define MXF_EVT_RI_CHANGE (MXF_EVT_RI_ASSERT|MXF_EVT_RI_DEASSERT)

#endif /* __SS7_MXI_H__ */

82 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Header Files

A.2 MXI Input-Output Controls Header File Listing

#ifndef __SS7_MXI_IOCTL_H__

#define __SS7_MXI_IOCTL_H__

#include <linux/ioctl.h>

#define MX_IOC_MAGIC ’c’

/*

* CONFIGURATION

*/

typedef struct mx_config {

mx_ulong type; /* unused */

mx_ulong encoding; /* encoding */

mx_ulong block_size; /* data block size (bits) */

mx_ulong samples; /* samples per block */

mx_ulong sample_size; /* sample size (bits) */

mx_ulong rate; /* clock rate (samples/second) */

mx_ulong tx_channels; /* number of tx channels */

mx_ulong rx_channels; /* number of rx channels */

mx_ulong opt_flags; /* options flags */

} mx_config_t;

#if 0

typedef struct mx_ifconfig {

mx_ulong ifaddr; /* ppa (card,span,channel) */

volatile mx_ulong ifflags; /* interface flags */

#define MX_IF_UP 0x01

#define MX_IF_RX_RUNNING 0x02

#define MX_IF_TX_RUNNING 0x04

mx_ulong iftype; /* interface type */

#define MX_TYPE_NONE 0

#define MX_TYPE_V35 1

#define MX_TYPE_DS0 2

#define MX_TYPE_DS0A 3

#define MX_TYPE_E1 4

#define MX_TYPE_T1 5

#define MX_TYPE_ATM 6

#define MX_TYPE_PACKET 7

mx_ulong ifrate; /* interface rate */

mx_ulong ifgtype; /* interface group (span) type */

#define MX_GTYPE_NONE 0

#define MX_GTYPE_T1 1

#define MX_GTYPE_E1 2

#define MX_GTYPE_J1 3

#define MX_GTYPE_ATM 4

#define MX_GTYPE_ETH 5

#define MX_GTYPE_IP 6

#define MX_GTYPE_UDP 7

#define MX_GTYPE_TCP 8

#define MX_GTYPE_RTP 9

#define MX_GTYPE_SCTP 10

2014-10-25 83

Appendix A: MXI Header Files

mx_ulong ifgrate; /* interface group (span) rate */

mx_ulong ifmode; /* interface mode */

#define MX_MODE_NONE 0

#define MX_MODE_DSU 1

#define MX_MODE_CSU 2

#define MX_MODE_DTE 3

#define MX_MODE_DCE 4

#define MX_MODE_CLIENT 5

#define MX_MODE_SERVER 6

#define MX_MODE_PEER 7

#define MX_MODE_REM_LB 8

#define MX_MODE_LOC_LB 9

#define MX_MODE_LB_ECHO 10

#define MX_MODE_TEST 11

mx_ulong ifgmode; /* interface group (span) mode */

#define MX_GMODE_NONE 0

#define MX_GMODE_LOC_LB 1

#define MX_GMODE_REM_LB 2

mx_ulong ifgcrc; /* interface group crc */

#define MX_GCRC_NONE 0

#define MX_GCRC_CRC4 1

#define MX_GCRC_CRC5 2

#define MX_GCRC_CRC6 3

mx_ulong ifclock; /* interface clock */

#define MX_CLOCK_NONE 0

#define MX_CLOCK_INT 1

#define MX_CLOCK_EXT 2

#define MX_CLOCK_LOOP 3

#define MX_CLOCK_MASTER 4

#define MX_CLOCK_SLAVE 5

#define MX_CLOCK_DPLL 6

#define MX_CLOCK_ABR 7

#define MX_CLOCK_SHAPER 8

#define MX_CLOCK_TICK 9

mx_ulong ifcoding;

#define MX_CODING_NONE 0

#define MX_CODING_NRZ 1

#define MX_CODING_NRZI 2

#define MX_CODING_AMI 3

#define MX_CODING_B6ZS 4

#define MX_CODING_B8ZS 5

#define MX_CODING_ESF 6

#define MX_CODING_AAL1 7

#define MX_CODING_AAL2 8

#define MX_CODING_AAL5 9

#define MX_CODING_HDB3 10

mx_ulong ifframing;

#define MX_FRAMING_NONE 0

#define MX_FRAMING_CCS 1

#define MX_FRAMING_CAS 2

84 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Header Files

#define MX_FRAMING_SF 3

#define MX_FRAMING_D4 MX_FRAMING_SF

#define MX_FRAMING_ESF 4

mx_ulong ifblksize;

volatile mx_ulong ifleads;

#define MX_LEAD_DTR 0x01

#define MX_LEAD_RTS 0x02

#define MX_LEAD_DCD 0x04

#define MX_LEAD_CTS 0x08

#define MX_LEAD_DSR 0x10

mx_ulong ifbpv;

mx_ulong ifalarms;

#define MX_ALARM_RED 0x01

#define MX_ALARM_BLU 0x02

#define MX_ALARM_YEL 0x04

#define MX_ALARM_REC 0x08

mx_ulong ifrxlevel;

mx_ulong iftxlevel;

#define MX_LEVEL_NONE 0

#define MX_LEVEL_75OHM 1

#define MX_LEVEL_100OHM 2

#define MX_LEVEL_120OHM 3

#define MX_LEVEL_LBO_1 4

#define MX_LEVEL_LBO_2 5

#define MX_LEVEL_LBO_3 6

#define MX_LEVEL_LBO_4 7

#define MX_LEVEL_LBO_5 8

#define MX_LEVEL_LBO_6 9

mx_ulong ifsync;

#define MX_SYNCS 4

mx_ulong ifsyncsrc[MX_SYNCS];

} mx_ifconfig_t;

#endif

#define MX_IOCGCONFIG _IOR(MX_IOC_MAGIC, 2, mx_config_t)

#define MX_IOCSCONFIG _IOWR(MX_IOC_MAGIC, 3, mx_config_t)

#define MX_IOCTCONFIG _IOWR(MX_IOC_MAGIC, 4, mx_config_t)

#define MX_IOCCCONFIG _IOR(MX_IOC_MAGIC, 5, mx_config_t)

/*

* STATE

*/

typedef struct mx_statem {

mx_ulong state;

mx_ulong flags;

} mx_statem_t;

#define MX_IOCGSTATEM _IOR(MX_IOC_MAGIC, 6, mx_statem_t)

#define MX_IOCCMRESET _IOR(MX_IOC_MAGIC, 7, mx_statem_t)

/*

2014-10-25 85

Appendix A: MXI Header Files

* STATISTICS

*/

typedef struct mx_stats {

mx_ulong header;

mx_ulong rx_octets;

mx_ulong tx_octets;

mx_ulong rx_overruns;

mx_ulong tx_underruns;

mx_ulong rx_buffer_overflows;

mx_ulong tx_buffer_overflows;

mx_ulong lead_cts_lost;

mx_ulong lead_dcd_lost;

mx_ulong carrier_lost;

} mx_stats_t;

#define MX_IOCGSTATSP _IOR(MX_IOC_MAGIC, 8, mx_stats_t)

#define MX_IOCSSTATSP _IOWR(MX_IOC_MAGIC, 9, mx_stats_t)

#define MX_IOCGSTATS _IOR(MX_IOC_MAGIC, 10, mx_stats_t)

#define MX_IOCCSTATS _IOW(MX_IOC_MAGIC, 11, mx_stats_t)

/*

* EVENTS

*/

typedef struct mx_notify {

mx_ulong events;

} mx_notify_t;

#define MX_IOCGNOTIFY _IOR(MX_IOC_MAGIC, 12, mx_notify_t)

#define MX_IOCSNOTIFY _IOW(MX_IOC_MAGIC, 13, mx_notify_t)

#define MX_IOCCNOTIFY _IOW(MX_IOC_MAGIC, 14, mx_notify_t)

typedef struct mx_mgmt {

mx_ulong cmd;

} mx_mgmt_t;

#define MX_MGMT_RESET 1

#define MX_IOCCMGMT _IOW(MX_IOC_MAGIC, 15, mx_mgmt_t)

#define MX_IOC_FIRST 0

#define MX_IOC_LAST 15

#define MX_IOC_PRIVATE 32

#endif /* __SS7_MXI_IOCTL_H__ */

86 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Drivers and Modules

Appendix B MXI Drivers and Modules

There are a number of standard drivers and modules provided by the OpenSS7 Project the provide
capabilities uilizing the Multiplex Interface.

B.1 MXI Drivers

Drivers that provide the MXI interace fall into two categories:

B.1.1 MXI Pseudo-device Drivers

Pseudo-device drivers that accept or provide the MXI interface for the purpose of providing or
controlling access the multiplexed facilities available on a system.

B.1.1.1 Multiplexing Driver—mx

The mx driver is a pseudo-device multiplexing driver that provides simple multiplexing services
between MXI Streams at the lower service interface to MXI Streams at the upper service interface.
This multiplexing driver is a simplified form of the matrix or mxmux drivers.

B.1.1.2 Multiplexing Driver—mxmux

The mxmux driver is a pseudo-device multiplexing driver that provides simple multiplexing services
between MXI Streams at the upper service interface and MXI Streams at the lower service interface.
It performs interconnection of MXS user Streams to spans, but does not perform switching between
lower service interfaces. This multiplexing driver is a simplified form of the matrix driver and
super-sets the functionality of the mx driver.

B.1.1.3 Switching Matrix Multiplexing Driver—matrix

The matrix driver is a pseudo-device multiplexing driver that provides complete switching matrix
and multiplexing services between CHI or MXI Streams at the upper service interface and CHI or
MXI Streams at the lower service interface. It performs forward and inverse multiplexing of channels
to spans, and performs pseudo-digital cross-connect and dynamic switching of single-, multi- and
full-rate channels within the switching matrix. This driver super-sets the functionality of the chmux
and mxmux drivers.

B.1.2 MXI Device Drivers

Real device drivers that provide the MXI interface for the purpose of accessing multiplexed channels
available on a hardware device (e.g. a T1 interface card driver). The MXI interface provides a full
abstraction of the underlying device driver. The MXI interface is one of the best ways of developing
a device driver in support of a multiplexed medium where discrete channels multiplexed into the
medium share common timing and syncrhonization. The hardware example is T1, J1 or E1 spans
(or even channelized DS3, E3, or SDH VTs). The software example is RTP, PWE2E, G

B.1.2.1 Device Driver—v401p

The v401p(4) driver is a real device driver that provides access to 4 T1, J1 or E1 interfaces. It is
used primarily by the OpenSS7 Project as a G.703/G.704 interface for SS7, BSC, SDLC, HDLC,
X.21, or voice.

2014-10-25 87

http://www.openss7.org/man2html?v401p(4)

Appendix B: MXI Drivers and Modules

B.2 MXI Modules

STREAMS pushable modules are an excellent way of adapting a MXS user Stream that conforms to
the general concept of a communications multiplex into a complex communications protocol. They
are also excellent for providing media conversion. For example, it is possible to push a conversion
module onto a MXS user Stream correspondin to a mu-law compressed voice channel and convert
the media stream to an A-law compressed voice channel.

B.2.1 Modules that convert MXI

The modules (described in the subsections that follow) convert between a MXI interface at the lower
service boundary and a MXI interface at the upper service boundary. Conversion is performed on
the media stream rather than between service interfaces.

B.2.1.1 Compression Conversion—mx-conv

The mx-conv module converts one MXI interface to another MXI interface, performing conversion
on the media stream in the process. The module is capable of converting between 14-bit signed or
unsigned linear, G.711 A-law compressed PCM and G.711 mu-law compressed PCM.

B.2.2 Modules that convert from MXI

The modules (described in the subsections that follow) convert between a MXI interface at the lower
service boundary and another interface at the upper service boundary. Conversion is performed
between the service interfaces and might or might not include conversion of the bit stream.

B.2.3 Modules that convert to MXI

The modules (described in the subsections that follow) conver between another interface at the lower
service boundary and the MXI interface at the upper service boundary. Conversion is performed
between the service interfaces and might or might not include conversion of the bit stream.

B.2.3.1 Real-Time Protocol Module—rtp

88 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Applications

Appendix C MXI Applications

The multiplex interface is a rather important lowest layer component of a number of OpenSS7
Project protocol stacks.

C.1 MXI in Switch Matrix

As illustrated in Figure C.1, the MXI interface provides support for access to the OpenSS7 soft
switching matrix.1� �

Signalling System No. 7

SS7 X.25/ISO 8208

Private Packet Data Network

FR Q.922

Frame Relay

ISDN

Integrated Services Digital Network

mux

CHIMXI

MXI CHI
driver driver

module module

SLI

SDTI

CHI

module

module

SL ITU−T Q.703

sl

SDT ITU−T Q.702

sdt

DLPI

CDI

CHI

module

module

HDLC ISO 3309

hdlc

DLPI

CDI

CHI

module

module

HDLC ISO 3309

hdlc

DLPI

CDI

CHI

module

module

HDLC ISO 3309

hdlc

LAPD Q.921

lapd

LAPF Q.922

lapf

LAPB X.25

lapb

MATRIX

/dev/matrix, /dev/matrix/ch, /dev/matrix/mx

Software Switching Matrix G.703/G.704

Multiplex Conversion Module

MX−CONV

mx−conv

MX

/dev/v401p

Multiplex Device Driver G.704

CH

/dev/acb56

Channel Device Driver G.703

Channel Conversion Module

CH−CONV

ch−conv

High−Level Data Link ControlSignalling Terminal Q.702 High−Level Data Link Control High−Level Data Link Control

Link Access Procedure (FR) Link Access Procedure (D−Ch.)Link Access Procedure (Bal.)Signalling Link Q.703

Figure C.1: Switch Matrix
 	
The MXI interface is responsible for providing access to communications channels (single-rate, multi-
rate and full-rate) necessary for implementing the synchronous communications channels necessaary
for implementing data communications links. Use of the OpenSS7 software switch matrix at the

1 A interesting observation is that in Figure C.1, any of the channels that are used for SS7 signalling links, X.25
or OSI links, Frame Relay links or ISDN D-Channel links, can themselves be ISDN B-Channels, E-Channels,
H-Channels, or ISUP single-rate or multi-rate IMTs, or even Frame Relay PVCs.

2014-10-25 89

Appendix C: MXI Applications

lowest level, as illustrated in Figure C.1, provides a mechanism whereby any synchronous commu-
nications channel available to the host can be used as a data communications link, or directly as a
voice (or other media) channel.

The switching matrix supports syncrhonous channels using the MXI interface that are one of: single-
rate channels, multi-rate channels (statistically multiplexed fractional spans), or full-rate channels
(statistically multiplexed full spans). It provides a central point for management of facilities and
switching within an OpenSS7 host and provides for SNMP configuration, monitoring, operational
measurements, alarms, events, maintenance access, and other OAM&P functions.

Note also that the MXI interface has the capability of passing synchronous modem lead information
to applications as well as Circuit Associated Signalling (A and B bit) and group carrier alarms (Blue,
Yellow, Red) for those applications that require them.2

C.2 MXI in Zaptel Driver

C.3 MXI in Y.1453 TDM-IP Module

This is a ITU-T Recommendation Y.1453 TDM-IP module. It pushes over a UDP Stream that
provides connectivity to the peer TDM-IP system. The upper boundary service interface is the MXI
interface. The lower boundary service interface is the UDP-TPI interface.

In general, the UDP Stream may be opened, options configured, bound to a local IP address and
port number, and connected to a remote IP address and port number. This module can then be
pushed. Pushing the module will flush the Stream and any data messages received on the Stream
will be discarded until the Stream is configured, enabled and connected.

Once the module is pushed, the MXI Stream can be linked beneath the MATRIX multiplexing driver
and the channels available and the multiplex facility will be made available to the switching matrix.

C.4 MXI in IAX Module

This is an IAX module. It pushes over a UDP Stream that provides connectivity to the peer IAX
system. The upper boundary service interface is the MXI interface. The lower boundary service
interface is the UDP-TPI interface.

In general, the UDP Stream may be opened, options configured, bound to a local IP address and
port number, and connected to a remote IP address and port number. This module can then be
pushed. Pushing the module will flush the Stream and any data messages received on the Stream
will be discarded until the Stream is configured, enabled and connected.

Once the module is pushed, the MXI Stream can be linked beneath the MATRIX multiplexing driver
and the channels available and the multiplex facility will be made available to the switching matrix.

C.5 MXI in SS7 Stack

Figure C.2 illustrates the use of the MXI interface specification in the formation of the SS7 (Signalling
System No. 7) protocol stack.

The MXI interface is responsible for providing access to communications channels necessary for
implementing signalling data link, signalling terminals and signalling links in accordance with Q.702
and Q.703 as well as similar national standards.

2 Note that detection of local alarm conditions on carrier facilities is normally required for CAS, ISDN and
SS7 ISUP applications where intermediate digital multiplex equipment (i.e. DCCS) can cause distrupt the
transparent passing of carrier alarm information between endpoints.

90 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Applications

Use of the OpenSS7 softswitch matrix at the lowest level, as illustrated in Figure C.2, provides a
mechanism whereby any communications channel available to the host can be used as an SS7 link.

The major difficulties experienced with such an integrated driver were as follows:

− Because the driver is so closely integrated, it is difficult to use the driver for anything other
than SS7 signalling.

− The driver becomes too specific to SS7.

− It becomes difficult to use the devices under this driver approach for voice and switching.

− It becomes difficult to share the device with other applications.

− The SDLI interface does not support fractional (E1/T1) spans.

With the advent of the high-performance Linux Fast-STREAMS as well as extremely powerful COTS
processors, it is easily possible to separate the protocol levels.3 Thus, the drivers can provide the
generic Multiplex Interface (MXI) that provides direct access to multiplexed spans, or the generic
Multiplex Interface (MXI) to provide direct access to non-multiplexed discrete channel devices, and
these generic driver interfaces can be linked under the switching matrix multiplexing driver so that
a single upper MXI user Stream can provide access to any channel, span, or fractional span within
the entire host.

3 As it turns out, Linux Fast-STREAMS has such high performance that higher levels of performance can be
acheived by splitting functions into narrowly defined modules that can use STREAMS flow control to keep
code path scortching hot.

2014-10-25 91

Appendix C: MXI Applications

� �
ISUP IMT

Channels

mux

driver
MXI

MX

/dev/v401p

MATRIX

/dev/matrix, /dev/matrix/ch, /dev/matrix/mx

mux

SS7 Message Transfer Part Level 3

MTP

/dev/mtp, /det/mtp−npi, /dev/mtp−tpi

Software Switching Matrix G.703/G.704

Multiplex Device Driver G.704

driver
CHI

CH

/dev/acb56

module
SDLI

CHI

module
SDTI

module
SLI

SL

sl

SDT

sdt

Signalling Link Q.703

Signalling Terminal Q.702

SDL

sdl

Signalling Data Link Q.701

Channel Device Driver G.703

MTPIMTPI

module module

TPINPIMTPI

MTPI

mtp−npi mtp−tpi

Network Provider Transport Provider

Interace (MTP−NPI) Interface (MTP−TPI)

driver
SLI

X400P−SL Q.703

/dev/x400p−sl

Signalling Link Q.703

driver
SLI

ACB56 V.35

/dev/acb56n

Signalling Link Q.703

CHI

CHI

Figure C.2: SS7 Protocol Stack
 	
In previous arrangements, the MTP manager opened a Stream on the X400P-SL driver and attached
it to a PPA corresponding to either a single-rate channel (Q.703) or a full-rate span (Q.703 Annex
B) and linked it beneath the MTP multiplexing driver. This management is not disrupted by the
shift to the Software Switching Matrix. A minor device number on the software switching matrix is
defined with an autopush specification for the sdl, sdt and sl modules. Opening this minor device
number, as before, results in an unattached SL Stream. The MTP manager attaches the Stream as
before and links it under the MTP multiplexing driver. This is illustrated in Figure C.2.

92 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Applications

C.6 MXI in ISDN Stack� �

mux

DLPI

CDI

CHI

driver
MXI

mux

CHI

CHI

MX

/dev/v401p

MATRIX

/dev/matrix, /dev/matrix/ch, /dev/matrix/mx

HDLC ISO 3309

hdlc

LAPD Q.921

lapd

ISDN−CC

/dev/isdn, /dev/isdn−cci

Multiplex Device Driver G.704

Software Switching Matrix G.703/G.704

High−Level Data Link Control

Link Access Procedure (D−Ch)

ISDN Q.931 Call Control

CHI

CHI
DLPI

CDI

CHI

driver
CHI

module

module

CH

/dev/acb56

LAPD Q.921

lapd

Channel Device Driver G.703

Link Access Procedure (D−Ch)

CCICCI

module module

TPINPICCI

CCI

isdn−tpiisdn−npi

Transport Provider

Interface (ISDN−TPI)

Network Provider

Interace (ISDN−NPI)

HDLC ISO 3309

hdlc

High−Level Data Link Control

module

module

Figure C.3: ISDN Protocol Stack
 	
Figure C.3 illustrates the use of the MXI interface specification in the formation of the ISDN (Inte-
grated Services Digital Network) protocol stack. The MXI interface provides two primary categories
of access necessary for the ISDN protocol stack:

− Access to multiplexed D channels on the physical medium (either BRI or PRI) for use with
HDLC and LAPB protocol modules to form the ISDN signalling link.

− Access to multiplexed B channels on the physical medium (either BPI or PRI) for use with the
software switchin matrix matrix(4) of media gateway mg(4) components. The MXI is also
able to provide access to the B-channel provided by CAPI devices.

2014-10-25 93

http://www.openss7.org/man2html?matrix(4)
http://www.openss7.org/man2html?mg(4)

Appendix C: MXI Applications

The MXI interface is responsible for providing switched and permanent access to communications
channels necessary for implementing D-channels (HDLC and LAPD) and B-channels (direct access).

Use of the OpenSS7 softswitch matrix at the lowest level, as illustrated in Figure C.3, provides a
mechanism whereby any available communications channel available to the host can be used as a
D-channel, and any communications channel available to the host can be used as a B-channel.

C.7 MXI in X.25 Stack� �

mux

NLI

mux

DLPI

mux

NLINLINLINLI

module module module module

(v1 or 2)

NLI
NPI NPI TPI(v3)

NLI

/dev/ixe

IP

/dev/ip

s_nli3 s_npi, npi s_cons s_xx25

IP over X.25

Encapsulation (IXE)

Network Layer

Interface (NLI)

Network Provider

Interace (NPI)

Connect.−Oriented

Ntwk. Serv. (CONS)

X/Open X.25

Interace (XX25)

Internet Protocol

LLI
mux

MAC

LLC

/dev/llc

LLI
mux

WAN
driver

LAPB

/dev/lapb

WAN

/dev/wans

DLPI

CDI
module

LAPB

/dev/lapb

HDLC

hdlc

X.25 PLP

/dev/x25, /dev/x25pckt, /dev/x25−plp

X.25 Packet Layer Protocol

Link Access Procedure (Bal) Link Access Procedure (Bal)Logical Link Control

Wide Area Network High−Level Data Link Control

module

Software Switching Matrix

MATRIX

/dev/matrix, /dev/streams/matrix/mx, /dev/streams/matrix/ch

mux

CHI CHI

MXI
driver

MX

/dev/v401p

Multiplex Device Driver

CHI
driver

CH

/dev/acb56

Channel Device Driver

driver

MAC

/dev/eth

Media Access Control

Figure C.4: X.25 Protocol Stack
 	
94 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Applications

Figure C.4 illustrates the use of the MXI interface specification in the ofrmation of the X.25 protocol
stack. The MXI interface provides several primary categories of access necessary for the X.25 protocol
stack:

− Access to asyncrhonous modems for dial access to X.25 public or private data networks.

− Access to syncrhonous modems for permanent connections to X.25 public or private data net-
works.

− Access to ISDN B-channels for switched connections to X.25 public or private data networks.

− Access to channelized, fractional and unchannelized carrier facilities.

The MXI interface is responsible for providing the full and fractional carrier access necessary to
perform HDLC and LAPB protocol functions for X.25 and OSI.

Use of the OpenSS7 softswitch matrix at the lowest level, as illustrated in Figure C.4, provides a
mechanism whereby any available communications channel available to the host (including ISDN
B-channels) can be used as a LAPB or ISO data link.

C.8 MXI in Frame Relay Stack

As illustrated in Figure C.4, the MXI interface provides support for access to transmission facilities
in support of the OpenSS7 Frame Relay Stack. The MXI interface is responsible for providing the
full and fractional carrier access necessary to provide HDLC and LAPF protocol functions for Frame
Relay.

2014-10-25 95

Appendix C: MXI Applications

� �

fr−npi

Network Provider

Interace (FR−NPI)

mux

DLPI

CDI

CHI

driver
MXI

module

module

mux

FR−CC

/dev/fr, /dev/fr−cci

LAPF Q.922

lapf

HDLC ISO 3309

hdlc

MATRIX

/dev/matrix, /dev/matrix/ch, /dev/matrix/mx

MX

/dev/v401p

Multiplex Device Driver G.704

High−Level Data Link Control

Link Access Procedure (FR)

Frame Relay Q.933

Software Switching Matrix G.703/G.704

DLPI

CDI

CHI

driver
CHI

module

module

LAPF Q.922

lapf

CH

/dev/acb56

Channel Device Driver G.703

HDLC ISO 3309

hdlc

High−Level Data Link Control

Link Access Procedure (FR)

CCICCI

module module

TPINPICCI

CCI

fr−tpi

Transport Provider

Interface (FR−TPI)

ifr

IP over Frame Relay

Encapsulation (IFR)

ip

Internet Protocol

IP

Figure C.5: Frame Relay Protocol Stack
 	
Use of the OpenSS7 softswitch matrix at the lowest level, as illustrated in Figure C.5, provides a
mechanism whereby any available communications channel available to the host (including ISDN
B-channels) can be used as a Frame Relay data link.

C.9 MXI in Media Gateway

96 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) MXI Applications

� �

IP over X.25

Encapsulation (IXE)

/dev/ixe

IP

/dev/ip

Internet Protocol

X.25 Packet Layer Protocol

X.25 PLP

/dev/x25, /dev/x25pckt, /dev/x25−plp

Network Layer

Interface (NLI)

s_nli3

Network Provider

Interace (NPI)

s_npi, npi s_cons

Connect.−Oriented

Ntwk. Serv. (CONS)

X/Open X.25

Interace (XX25)

s_xx25

Logical Link Control

LLC

/dev/llc

Link Access Procedure (Bal)

LAPB

/dev/lapb

Media Access Control

MAC

/dev/eth

Wide Area Network

WAN

/dev/wans

DLPI

NLI

mux

mux

LLI LLI

mux

NLINLI

NPI

module module

NLI

(v1 or 2)

NLI NLI

module module

NPI TPINLI

(v3)

mux mux

MAC WAN

driver driver

Figure C.6: Media Gateway
 	

2014-10-25 97

Multiplex Interface (MXI) MXI Utilities

Appendix D MXI Utilities

2014-10-25 99

Multiplex Interface (MXI) MXI File Formats

Appendix E MXI File Formats

2014-10-25 101

Multiplex Interface (MXI) MXI Compatibility and Porting

Appendix F MXI Compatibility and Porting

2014-10-25 103

Multiplex Interface (MXI) Glossary

Glossary

Signalling Data Link Service Data Unit
A grouping of SDL user data whose boundaries are preserved from one end of the
signalling data link connection to the other.

Data transfer
The phase in connection and connectionless modes that supports the transfer of data
between to signalling data link users.

SDL provider
The signalling data link layer protocol that provides the services of the signalling data
link interface.

SDL user

The user-level application or user-level or kernel-level protocol that accesses the services
of the signalling data link layer.

Local management
The phase in connection and connectionless modes in which a SDL user initializes a
Stream and attaches a PPA address to the Stream. Primitives in this phase generate
local operations only.

PPA

The point at which a system attaches itself to a physical communications medium.

PPA identifier
An identifier of a particular physical medium over which communication transpires.

2014-10-25 105

Multiplex Interface (MXI) Acronyms

Acronyms

AERM Alignment Error Rate Monitor
CC Congestion Control
DAEDR Delimitation Alignment and Error Detection (Receive)
DAEDT Delimitation Alignment and Error Detection (Transmit)
EIM Errored Interval Monitor
IAC Initial Alignment Control
ITU-T International Telecommunications Union - Telecom Sector
LMS Provider A provider of Local Management Services
LMS Local Management Service
LMS User A user of Local Management Services
LM Local Management
LSC Link State Control
PPA Physical Point of Attachment
RC Reception Control
SDLI Signalling Data Link Interface
SDL SDU Signalling Data Link Service Data Unit
SDLS Signalling Data Link Service
SDL Signalling Data Link
SDTI Signalling Data Terminal Interface
SDTS Signalling Data Terminal Service
SDT Signalling Data Terminal
SLI Signalling Link Interface
SLS Signalling Link Service
SL Signalling Link
SL Signalling Link
SS7 Signalling System No. 7
TXC Transmission Control

2014-10-25 107

Multiplex Interface (MXI) References

References

[1] ITU-T Recommendation Q.700, Introduction to CCITT Signalling System No. 7, March
1993, (Geneva), ITU, ITU-T Telecommunication Standardization Sector of ITU, (Previously
“CCITT Recommendation”).

[2] ITU-T Recommendation Q.701, Functional Description of the Message Transfer Part (MTP)
of Signalling System No. 7, March 1993, (Geneva), ITU, ITU-T Telecommunication Stan-
dardization Sector of ITU, (Previously “CCITT Recommendation”).

[3] ITU-T Recommendation Q.702, Signalling System No. 7—Signalling Data Link, March
1993, (Geneva), ITU, ITU-T Telecommunication Standardization Sector of ITU, (Previously
“CCITT Recommendation”).

[4] ITU-T Recommendation Q.703, Signalling System No. 7—Signalling Link, March 1993,
(Geneva), ITU, ITU-T Telecommunication Standardization Sector of ITU, (Previously
“CCITT Recommendation”).

[5] ITU-T Recommendation Q.704, Message Transfer Part—Signalling Network Functions and
Messages, March 1993, (Geneva), ITU, ITU-T Telecommunication Standardization Sector
of ITU, (Previously “CCITT Recommendation”).

[6] Geoffrey Gerrietts; Dave Grothe, Mikel Matthews, Dave Healy, CDI—Application Program
Interface Guide, March 1999, (Savoy, IL), GCOM, Inc.

[7] ITU-T Recommendation Q.771, Signalling System No. 7—Functional Description of Trans-
action Capabilities, March 1993, (Geneva), ITU, ITU-T Telecommunication Standardization
Sector of ITU, (Previously “CCITT Recommendation”).

2014-10-25 109

http://www.itu.int/rec/T-REC-Q.700/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.701/
http://www.itu.int/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.702/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.703/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.704/
http://www.itu.int/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.771/
http://www.itu.int/
http://www.itu.int/

Multiplex Interface (MXI) Licenses

Licenses

All code presented in this manual is licensed under the [GNU Affero General Public License],
page 111. The text of this manual is licensed under the [GNU Free Documentation License], page 121,
with no invariant sections, no front-cover texts and no back-cover texts. Please note, however, that
it is just plain wrong to modify statements of, or attribute statements to, the Author or OpenSS7
Corporation.

GNU Affero General Public License

The GNU Affero General Public License.
Version 3, 19 November 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for software and other kinds of
works, specifically designed to ensure cooperation with the community in the case of network server
software.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, our General Public Licenses are intended to guarantee
your freedom to share and change all versions of a program–to make sure it remains free software
for all its users.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs, and that you know you can do these things.

Developers that use our General Public Licenses protect your rights with two steps: (1) assert
copyright on the software, and (2) offer you this License which gives you legal permission to copy,
distribute and/or modify the software.

A secondary benefit of defending all users’ freedom is that improvements made in alternate versions
of the program, if they receive widespread use, become available for other developers to incorpo-
rate. Many developers of free software are heartened and encouraged by the resulting cooperation.
However, in the case of software used on network servers, this result may fail to come about. The
GNU General Public License permits making a modified version and letting the public access it on
a server without ever releasing its source code to the public.

The GNU Affero General Public License is designed specifically to ensure that, in such cases, the
modified source code becomes available to the community. It requires the operator of a network
server to provide the source code of the modified version running there to the users of that server.
Therefore, public use of a modified version, on a publicly accessible server, gives the public access
to the source code of the modified version.

An older license, called the Affero General Public License and published by Affero, was designed to
accomplish similar goals. This is a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification follow.

2014-10-25 111

http://fsf.org/

Licenses texi/agpl3.texi

Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU Affero General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-
conductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some countries other activities
as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive
copies. Mere interaction with a user through a computer network, with no transfer of a copy,
is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and how to view a copy
of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with
that Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means a
major essential component (kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to produce the work, or an
object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not include the work’s System Li-
braries, or general-purpose tools or generally available free programs which are used unmodified
in performing those activities but which are not part of the work. For example, Correspond-
ing Source includes interface definition files associated with source files for the work, and the

112 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) Licenses

source code for shared libraries and dynamically linked subprograms that the work is specif-
ically designed to require, such as by intimate data communication or control flow between
those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The output from running a covered work
is covered by this License only if the output, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others for
the sole purpose of having them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the terms of this License in
conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable
law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December
1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of tech-
nological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation
or modification of the work as a means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copy-
right notice; keep intact all notices stating that this License and any non-permissive terms
added in accord with section 7 apply to the code; keep intact all notices of the absence of any
warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support
or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet
all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a relevant
date.

2014-10-25 113

Licenses texi/agpl3.texi

b. The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement in
section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section
7 additional terms, to the whole of the work, and all its parts, regardless of how they are
packaged. This License gives no permission to license the work in any other way, but it
does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of
a covered work in an aggregate does not cause this License to apply to the other parts of the
aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms of
this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical dis-
tribution medium), accompanied by the Corresponding Source fixed on a durable physical
medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical dis-
tribution medium), accompanied by a written offer, valid for at least three years and valid
for as long as you offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the Corresponding Source for all
the software in the product that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more than your reasonable cost
of physically performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer, in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a charge),
and offer equivalent access to the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients to copy the Corresponding
Source along with the object code. If the place to copy the object code is a network
server, the Corresponding Source may be on a different server (operated by you or a third
party) that supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain obligated to ensure that it is available
for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other peers

114 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) Licenses

where the object code and Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything
designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work
in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in perpetuity or for a fixed term
(regardless of how the transaction is characterized), the Corresponding Source conveyed under
this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code
on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue
to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access
to a network may be denied when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making ex-
ceptions from one or more of its conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions apply only to part of the
Program, that part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or can
give appropriate copyright permission.

2014-10-25 115

Licenses texi/agpl3.texi

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16
of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material; or

e. Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who conveys
the material (or modified versions of it) with contractual assumptions of liability to the
recipient, for any liability that these contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the mean-
ing of section 10. If the Program as you received it, or any part of it, contains a notice stating
that it is governed by this License along with a term that is a further restriction, you may
remove that term. If a license document contains a further restriction but permits relicensing
or conveying under this License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does not survive such relicensing
or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material
under section 10.

116 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) Licenses

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require acceptance. However, nothing other
than this License grants you permission to propagate or modify any covered work. These actions
infringe copyright if you do not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a
cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a patent against the
party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms
of this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to

2014-10-25 117

Licenses texi/agpl3.texi

downstream recipients. “Knowingly relying” means you have actual knowledge that, but for
the patent license, your conveying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some of
the parties receiving the covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a covered work if you are a
party to an arrangement with a third party that is in the business of distributing software,
under which you make payment to the third party based on the extent of your activity of
conveying the work, and under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a) in connection with copies
of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless
you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contra-
dict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not convey it at all.
For example, if you agree to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could satisfy both those terms
and this License would be to refrain entirely from conveying the Program.

13. Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the Program, your modified
version must prominently offer all users interacting with it remotely through a network (if
your version supports such interaction) an opportunity to receive the Corresponding Source
of your version by providing access to the Corresponding Source from a network server at no
charge, through some standard or customary means of facilitating copying of software. This
Corresponding Source shall include the Corresponding Source for any work covered by version
3 of the GNU General Public License that is incorporated pursuant to the following paragraph.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU General Public License
into a single combined work, and to convey the resulting work. The terms of this License will
continue to apply to the part which is the covered work, but the work with which it is combined
will remain governed by version 3 of the GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU Affero
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

118 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) Licenses

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU Affero General Public License “or any later version” applies to it,
you have the option of following the terms and conditions either of that numbered version or of
any later version published by the Free Software Foundation. If the Program does not specify
a version number of the GNU Affero General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Affero
General Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow
a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

2014-10-25 119

Licenses

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively state the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Affero General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If your software can interact with users remotely through a network, you should also make sure that
it provides a way for users to get its source. For example, if your program is a web application, its
interface could display a “Source” link that leads users to an archive of the code. There are many
ways you could offer source, and different solutions will be better for different programs; see section
13 for the specific requirements.

You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU AGPL, see http://www.gnu.org/licenses/.

120 Version 1.1 Rel. 7.20141001

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

Multiplex Interface (MXI) Licenses

GNU Free Documentation License

GNU FREE DOCUMENTATION LICENSE
Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secon-
darily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

2014-10-25 121

http://fsf.org/

Licenses texi/fdl13.texi

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without markup, Tex-
info input format, LaTEX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-
amples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

122 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) Licenses

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

2014-10-25 123

Licenses texi/fdl13.texi

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that
the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

124 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) Licenses

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.

2014-10-25 125

Licenses texi/fdl13.texi

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.

org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

126 Version 1.1 Rel. 7.20141001

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Multiplex Interface (MXI) Licenses

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . .Texts.”
line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

2014-10-25 127

Multiplex Interface (MXI) Index

Index

A
admin_state . 65
avail_status . 65

B
block_size . 62
bursty_errored_seconds . 69

C
carrier_lost . 68
close(2s) . 16
cmd . 70
controlled_slip_seconds . 68
ctrl_status . 66

D
degraded_minutes . 69

E
encoding . 61
EPROTO . 59
errno(3) . 27, 45
errored_seconds . 68
events . 69

F
FASTBUF . 62

H
header . 67

I
index . 64
ioctl(2s) . 63

L
lead_cts_lost . 68
lead_dcd_lost . 68
license, AGPL . 111
license, FDL . 121
license, GNU Affero General Public License . . . 111
license, GNU Free Documentation License 121
line_coding_violations . 69
line_errored_seconds . 69

M
M_DATA . 53, 54
M_ERROR . 59
M_PCPROTO 25, 27, 29, 30, 41, 43
M_PROTO . . 29, 30, 32, 34, 35, 37, 38, 39, 40, 41, 45,

47, 48, 50, 52, 53, 54, 55, 58
matrix(4) . 93
mg(4) . 93
mode . 64
mx_addr_length 30, 31, 32, 35, 37
mx_addr_offset . 30, 32, 35, 37
MX_ADMIN_LOCKED . 65
MX_ADMIN_SHUTDOWN . 65
MX_ADMIN_UNLOCKED . 65
MX_attach_req . 32
MX_ATTACH_REQ . 12, 15, 16
MX_ATTACH_REQ . 17
MX_ATTACH_REQ 25, 27, 28, 31, 32, 46
MX_AVAIL_DEGRADED . 66
MX_AVAIL_DEPEND . 66
MX_AVAIL_FAILED . 65
MX_AVAIL_INTEST . 65
MX_AVAIL_LOGFULL . 66
MX_AVAIL_MISSING . 66
MX_AVAIL_OFFDUTY . 66
MX_AVAIL_OFFLINE . 66
MX_AVAIL_POWEROFF . 66
mx_cause . 40, 58
MX_CHECK . 41, 44
MX_CIRCUIT . 30
MX_CMD_FORTEST . 70
MX_CMD_LOCK . 70
MX_CMD_LOCLOOP . 70
MX_CMD_REMLOOP . 70
MX_CMD_SHUTDOWN . 70
MX_CMD_UNLOCK . 70
mx_config_t . 61
mx_conn_flags 50, 52, 55, 57, 58
MX_connect_con . 52
MX_CONNECT_CON 13, 22, 26, 28, 31, 46, 51, 52
MX_connect_req . 50
MX_CONNECT_REQ 13, 22, 25, 27, 28, 31, 46, 50
mx_correct_prim . 25
MX_CTRL_CANTEST . 66
MX_CTRL_PARTLOCK . 66
MX_CTRL_RESERVED . 66
MX_CTRL_SUSPENDED . 66
MX_CURRENT . 42, 44
MX_data_ind . 54
MX_DATA_IND . 13, 22, 28, 54
MX_data_req . 53
MX_DATA_REQ . 13, 22, 27, 53

2014-10-25 129

Index

MX_DEFAULT . 41, 44
MX_detach_req . 34
MX_DETACH_REQ . 12, 15, 16
MX_DETACH_REQ . 17
MX_DETACH_REQ . 25, 28, 34
MX_disable_con . 39
MX_DISABLE_CON . 19
MX_DISABLE_CON 26, 28, 31, 38, 39, 46
MX_disable_ind . 40
MX_DISABLE_IND . 19
MX_DISABLE_IND . 28, 40
MX_disable_req . 38
MX_DISABLE_REQ . 16
MX_DISABLE_REQ . 19
MX_DISABLE_REQ . 25, 27, 38
MX_DISABLED . 16
MX_disconnect_con . 57
MX_DISCONNECT_CON . . 13, 23, 26, 28, 31, 46, 56, 57
MX_disconnect_ind . 58
MX_DISCONNECT_IND 13, 23, 28, 58
MX_disconnect_req . 55
MX_DISCONNECT_REQ . . 13, 23, 25, 27, 28, 31, 46, 55
MX_enable_con . 37
MX_ENABLE_CON 18, 26, 28, 31, 36, 37, 46
MX_enable_req . 35
MX_ENABLE_REQ . . 12, 16, 18, 25, 26, 27, 28, 31, 35,

46
MX_ENCODING_CN . 61
MX_ENCODING_DVI4 . 61
MX_ENCODING_FS1015 . 61
MX_ENCODING_FS1016 . 61
MX_ENCODING_G711_PCM_A . 61
MX_ENCODING_G711_PCM_L . 62
MX_ENCODING_G711_PCM_U . 62
MX_ENCODING_G721 . 62
MX_ENCODING_G722 . 62
MX_ENCODING_G723 . 62
MX_ENCODING_G726 . 62
MX_ENCODING_G728 . 62
MX_ENCODING_G729 . 62
MX_ENCODING_GSM . 62
MX_ENCODING_GSM_EFR . 62
MX_ENCODING_GSM_HR . 62
MX_ENCODING_LPC . 62
MX_ENCODING_MPA . 62
MX_ENCODING_NONE . 61
MX_ENCODING_QCELP . 62
MX_ENCODING_RED . 62
MX_ENCODING_S16_BE . 62
MX_ENCODING_S16_LE . 62
MX_ENCODING_S8 . 62
MX_ENCODING_U16_BE . 62
MX_ENCODING_U16_LE . 62
MX_ENCODING_U8 . 62
MX_ENCODING_VDVI . 62
MX_error_ack . 27

MX_ERROR_ACK . 15
MX_ERROR_ACK . 17
MX_ERROR_ACK . 18
MX_ERROR_ACK . 19
MX_ERROR_ACK 27, 28, 29, 33, 34, 36, 38, 42, 51,

56, 59
MX_error_ind . 45
MX_ERROR_IND . 20
MX_ERROR_IND . 45
mx_error_primitive . 27
mx_error_type . 27, 45
MX_error_type . 45
MX_ERRORK_ACK . 18
MX_ERRORK_ACK . 19
mx_event . 48
MX_event_ind . 48
MX_EVENT_IND . 13, 21, 28, 48
MX_FAILURE . 43
mx_flags . 32, 35, 37
MX_info_ack . 30
MX_INFO_ACK 16, 28, 29, 30, 32, 34
MX_info_req . 29
MX_INFO_REQ . 16, 27, 29, 30
mx_interval . 47
MX_IOCCCONFIG . 63
MX_IOCCMGMT . 71
MX_IOCCMRESET . 67
MX_IOCCNOTIFY . 69
MX_IOCGCONFIG . 63
MX_IOCGNOTIFY . 69
MX_IOCGSTATEM . 67
MX_IOCSCONFIG . 63
MX_IOCSNOTIFY . 69
MX_IOCTCONFIG . 63
mx_mgmt_flags . 41, 43, 44
mx_mgmt_t . 70, 71
MX_MODE_LOCLOOP . 64
MX_MODE_REMLOOP . 64
MX_MODE_TEST . 65
MX_NEGOTIATE . 41, 44
mx_notify_t . 69
MX_NOTSUPPORT . 43
MX_ok_ack . 25
MX_OK_ACK . 15
MX_OK_ACK . 17
MX_OK_ACK 25, 28, 32, 34, 51, 56
mx_opt_length . 41, 43
mx_opt_offset . 41, 43
MX_optmgmt_ack . 43
MX_OPTMGMT_ACK . 19
MX_OPTMGMT_ACK . 28, 42, 43
MX_optmgmt_req . 41
MX_OPTMGMT_REQ . 16
MX_OPTMGMT_REQ . 19
MX_OPTMGMT_REQ . 27, 41, 43, 44
mx_parm_length . 30

130 Version 1.1 Rel. 7.20141001

Multiplex Interface (MXI) Index

mx_parm_offset . 30
MX_PARTSUCCESS . 43
mx_ppa_stype . 31
mx_primitive 25, 27, 29, 30, 32, 34, 35, 37, 38,

39, 40, 41, 43, 45, 47, 48, 50, 52, 53, 54, 55, 57,
58

mx_prov_class . 30
mx_prov_flags . 30
MX_RATE_11025 . 62
MX_RATE_16000 . 62
MX_RATE_184000 . 62
MX_RATE_192000 . 62
MX_RATE_22050 . 62
MX_RATE_240000 . 62
MX_RATE_248000 . 62
MX_RATE_44100 . 62
MX_RATE_8000 . 62
MX_RATE_90000 . 62
MX_RATE_VARIABLE . 62
MX_READONLY . 43
mx_slot 13, 48, 50, 52, 53, 54, 55, 57, 58
mx_state . 25, 28, 31, 45
mx_statem_t . 63, 64, 67
MX_stats_ind . 47
MX_STATS_IND . 20
MX_STATS_IND . 47
mx_stats_t . 67
mx_style . 31, 32, 34
MX_STYLE1 . 31
MX_STYLE2 . 31, 32, 34
MX_SUCCESS . 43
mx_timestamp . 47
MX_TYPE_CAS . 64
MX_TYPE_CCS . 64
MX_TYPE_NONE . 64
MX_UNATTACHED . 17
mx_unix_error . 27, 45
MX_USAGE_ACTIVE . 65
MX_USAGE_BUSY . 65
MX_USAGE_IDLE . 65
mx_version . 31
MX_VERSION . 31
MX_VERSION_1_0 . 31
MX_VERSION_1_1 . 31
MXBADADDR 27, 29, 33, 34, 36, 38, 42, 45, 51, 56
MXBADFLAG 27, 29, 33, 34, 36, 38, 42, 45, 51, 56
MXBADOPT 27, 29, 33, 34, 36, 38, 42, 45, 51, 56
MXBADPARM 27, 29, 33, 34, 36, 38, 42, 45, 51, 56
MXBADPARMTYPE . . 27, 29, 33, 34, 36, 38, 42, 45, 51,

56
MXBADPRIM 27, 29, 33, 34, 36, 38, 42, 45, 51, 56
MXBADSLOT 27, 29, 33, 34, 36, 38, 42, 45, 51, 56
MXF_EVT_BLU_ALARM . 48
MXF_EVT_CTS_ASSERT . 48
MXF_EVT_CTS_DEASSERT . 48
MXF_EVT_DCD_ASSERT . 48

MXF_EVT_DCD_DEASSERT . 48
MXF_EVT_DSR_ASSERT . 48
MXF_EVT_DSR_DEASSERT . 48
MXF_EVT_DTR_ASSERT . 48
MXF_EVT_DTR_DEASSERT . 48
MXF_EVT_NO_ALARM . 48
MXF_EVT_RED_ALARM . 48
MXF_EVT_RI_ASSERT . 48
MXF_EVT_RI_DEASSERT . 48
MXF_EVT_RTS_ASSERT . 48
MXF_EVT_RTS_DEASSERT . 48
MXF_EVT_YEL_ALARM . 48
MXF_MONITOR . 50, 52, 55, 57, 58
MXF_RX_DIR . 50, 52, 55, 57, 58
MXF_TX_DIR . 50, 52, 55, 57, 58
MXNOTSUPP 27, 29, 33, 34, 36, 38, 42, 45, 51, 56
MXOUTSTATE . . . 27, 29, 33, 34, 36, 38, 42, 45, 51, 56
MXS_ATTACHED 12, 26, 28, 31, 32, 34, 35, 38, 39,

40, 46
MXS_CONNECTED . . 26, 28, 31, 46, 51, 52, 53, 54, 55,

58
MXS_DETACHED 12, 25, 26, 28, 30, 31, 32, 34, 46
MXS_ENABLED 26, 28, 31, 36, 37, 38, 40, 46, 49,

51, 56, 57, 58
MXS_UNINIT . 25, 28, 31, 46
MXS_UNUSABLE . 25, 28, 31, 46
MXS_WACK_AREQ 26, 28, 30, 31, 32, 46
MXS_WACK_CREQ 26, 28, 31, 46, 51
MXS_WACK_DREQ . 26, 28, 31, 46
MXS_WACK_UREQ 26, 28, 31, 34, 46
MXS_WCON_CREQ 26, 28, 31, 46, 51, 52
MXS_WCON_DREQ 26, 28, 31, 46, 56, 57
MXS_WCON_EREQ 26, 28, 31, 35, 37, 46
MXS_WCON_RREQ 26, 28, 31, 38, 39, 46
MXSYSERR 27, 29, 33, 34, 36, 38, 42, 45, 51, 56

O
open(2s) . 12, 16, 31
opt_flags . 63

P
path_coding_violations . 68

R
rate . 62, 64
rx_buffer_overflows . 68
rx_channels . 63
rx_octets . 67
rx_overruns . 68

S
sample_size . 62

2014-10-25 131

Index

samples . 62
severely_errored_framing_seconds 68
severely_errored_seconds 68
STREAMS . 3, 7

T
tx_buffer_overflows . 68
tx_channels . 62
tx_octets . 67
tx_underruns . 68

type . 61, 64

U

unavailable_seconds . 68
usage_state . 65

V

v401p(4) . 87

132 Version 1.1 Rel. 7.20141001

	Preface
	Notice
	Abstract
	Purpose
	Intent
	Audience

	Revision History
	Version Control

	ISO 9000 Compliance
	Disclaimer
	U.S. Government Restricted Rights

	Acknowledgements

	Introduction
	Related Documentation
	Role

	Definitions, Acronyms, Abbreviations

	The Multiplex Layer
	Model of the MXI
	MXI Services
	Local Management
	Protocol

	Purpose of the MXI
	Multiplex Addressing
	Physical Attachment Identification
	MXS Provider Styles
	Style 1 MXS Provider
	Style 2 MXS Provider

	Multiplex Media

	Multiplex Parameters

	MXI Services Definition
	Local Management Services
	Acknowledgement Service
	Information Reporting Service
	Physical Point of Attachment Service
	PPA Attachment Service
	PPA Detachment Service

	Initialization Service
	Interface Enable Service
	Interface Disable Service

	Options Management Service
	Error Reporting Service
	Statistics Reporting Service
	Event Reporting Service

	Protocol Services
	Connection Service
	Data Transfer Service
	Disconnection Service

	MXI Service Primitives
	Local Management Service Primitives
	Acknowledgement Service Primitives
	MX_OK_ACK
	MX_ERROR_ACK

	Information Reporting Service Primitives
	MX_INFO_REQ
	MX_INFO_ACK

	Physical Point of Attachment Service Primitives
	MX_ATTACH_REQ
	MX_DETACH_REQ

	Initialization Service Primitives
	MX_ENABLE_REQ
	MX_ENABLE_CON
	MX_DISABLE_REQ
	MX_DISABLE_CON
	MX_DISABLE_IND

	Options Management Service Primitives
	MX_OPTMGMT_REQ
	MX_OPTMGMT_ACK

	Event Reporting Service Primitives
	MX_ERROR_IND
	MX_STATS_IND
	MX_EVENT_IND

	Protocol Service Primitives
	Connection Service Primitives
	MX_CONNECT_REQ
	MX_CONNECT_CON

	Data Transfer Service Primitives
	MX_DATA_REQ
	MX_DATA_IND

	Disconnection Service Primitives
	MX_DISCONNECT_REQ
	MX_DISCONNECT_CON
	MX_DISCONNECT_IND

	Diagnostics Requirements
	Non-Fatal Error Handling Facility
	Fatal Error Handling Facility

	MXI Input-Output Controls
	MXI Configuration
	MXI Get Configuration
	MXI Set Configuration
	MXI Test Configuration
	MXI Commit Configuration

	MXI Options
	MXI State
	MXI Get State
	MXI Reset State

	MXI Statistics
	MXI Events
	MXI Get Notify
	MXI Set Notify
	MXI Clear Notify

	MXI Commands
	MXI Command

	MXI Management
	MXI Header Files
	MXI Header File Listing
	MXI Input-Output Controls Header File Listing

	MXI Drivers and Modules
	MXI Drivers
	MXI Pseudo-device Drivers
	Multiplexing Driver---mx
	Multiplexing Driver---mxmux
	Switching Matrix Multiplexing Driver---matrix

	MXI Device Drivers
	Device Driver---v401p

	MXI Modules
	Modules that convert MXI
	Compression Conversion---mx-conv

	Modules that convert from MXI
	Modules that convert to MXI
	Real-Time Protocol Module---rtp

	MXI Applications
	MXI in Switch Matrix
	MXI in Zaptel Driver
	MXI in Y.1453 TDM-IP Module
	MXI in IAX Module
	MXI in SS7 Stack
	MXI in ISDN Stack
	MXI in X.25 Stack
	MXI in Frame Relay Stack
	MXI in Media Gateway

	MXI Utilities
	MXI File Formats
	MXI Compatibility and Porting
	Glossary
	Acronyms
	References
	Licenses
	GNU Affero General Public License
	Preamble
	How to Apply These Terms to Your New Programs

	GNU Free Documentation License

	Index

